918 resultados para Linear quadratic Gaussian control
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
The unconditional expectation of social welfare is often used to assess alternative macroeconomic policy rules in applied quantitative research. It is shown that it is generally possible to derive a linear - quadratic problem that approximates the exact non-linear problem where the unconditional expectation of the objective is maximised and the steady-state is distorted. Thus, the measure of pol icy performance is a linear combinat ion of second moments of economic variables which is relatively easy to compute numerically, and can be used to rank alternative policy rules. The approach is applied to a simple Calvo-type model under various monetary policy rules.
Resumo:
The most widely used formula for estimating glomerular filtration rate (eGFR) in children is the Schwartz formula. It was revised in 2009 using iohexol clearances with measured GFR (mGFR) ranging between 15 and 75 ml/min × 1.73 m(2). Here we assessed the accuracy of the Schwartz formula using the inulin clearance (iGFR) method to evaluate its accuracy for children with less renal impairment comparing 551 iGFRs of 392 children with their Schwartz eGFRs. Serum creatinine was measured using the compensated Jaffe method. In order to find the best relationship between iGFR and eGFR, a linear quadratic regression model was fitted and a more accurate formula was derived. This quadratic formula was: 0.68 × (Height (cm)/serum creatinine (mg/dl))-0.0008 × (height (cm)/serum creatinine (mg/dl))(2)+0.48 × age (years)-(21.53 in males or 25.68 in females). This formula was validated using a split-half cross-validation technique and also externally validated with a new cohort of 127 children. Results show that the Schwartz formula is accurate until a height (Ht)/serum creatinine value of 251, corresponding to an iGFR of 103 ml/min × 1.73 m(2), but significantly unreliable for higher values. For an accuracy of 20 percent, the quadratic formula was significantly better than the Schwartz formula for all patients and for patients with a Ht/serum creatinine of 251 or greater. Thus, the new quadratic formula could replace the revised Schwartz formula, which is accurate for children with moderate renal failure but not for those with less renal impairment or hyperfiltration.
Resumo:
The purpose of this research was to combine the use of the component blend design to the response surface methodology, in order to foresee the effect of ternary apple juice blends (Catarina, Granny Smith and Pink Lady cultivars) on the physical-chemical characteristics of musts appointed to sparkling drink elaboration. Twelve mixes were made (three individual samples, three binary mixes and six ternary mixes), analyzed on the content of total reducing sugars, total titratable acidity and phenolic compounds; and adjusted, respectively, to the linear, quadratic and special cubic models. The results were organized in ternary charts of surface response and, from the overlap of these charts, it was determined a viable region which delimited the range of apple juice compositions that make musts physically and chemically suitable to sparkling drink elaboration. To represent the various possible combinations, the central point of the triangular area of the viable region was calculated and, this point, which represents the proportions of 23.22% of Catarina, 66.23% of Granny Smith and 10.55% of Pink Lady cultivars, was chosen to constitute the formulation of the must to be used in the elaboration of apple sparkling drinks.
Resumo:
The objective of this study was to evaluate the effect of the addition of oatmeal and palm fat in the elaboration of biscuits with added L-leucine and calcium in order to develop a product for sarcopenia in the elderly. The biscuits, or cookies, were elaborated applying a central composite rotational design with surface response methodology, and the significant linear, quadratic and interaction terms were used in the second order mathematical model. Physical, physicochemical and sensory analyses were performed by a trained panel. Based on the best results obtained, three cookie formulations were selected for sensory evaluation by the target group and physicochemical determinations. The formulations with the highest sensory scores for appearance and texture and medium scores for color and expansion index were selected. The addition of calcium and leucine increased significantly the concentration of these components in the biscuits elaborated resulting in a cookie with more than 30% of DRI (Dietary Reference Intake) for calcium and leucine. The formulations selected showed high acceptance by the target group; therefore, they can be included in the diet of elderly with sarcopenia as a functional food.
Resumo:
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).
Resumo:
Un modèle de croissance et de réponse à la radiothérapie pour le glioblastome multiforme (GBM) basé le formalisme du modèle de prolifération-invasion (PI) et du modèle linéaire-quadratique a été développé et implémenté. La géométrie spécifique au patient est considérée en modélisant, d'une part, les voies d'invasion possibles des GBM avec l'imagerie du tenseur de diffusion (DTI) et, d'autre part, les barrières à la propagation à partir des images anatomiques disponibles. La distribution de dose réelle reçue par un patient donné est appliquée telle quelle dans les simulations, en respectant l'horaire de traitement. Les paramètres libres du modèle (taux de prolifération, coefficient de diffusion, paramètres radiobiologiques) sont choisis aléatoirement à partir de distributions de valeurs plausibles. Un total de 400 ensembles de valeurs pour les paramètres libres sont ainsi choisis pour tous les patients, et une simulation de la croissance et de la réponse au traitement est effectuée pour chaque patient et chaque ensemble de paramètres. Un critère de récidive est appliqué sur les résultats de chaque simulation pour identifier un lieu probable de récidive (SPR). La superposition de tous les SPR obtenus pour un patient donné permet de définir la probabilité d'occurrence (OP). Il est démontré qu'il existe des valeurs de OP élevées pour tous les patients, impliquant que les résultats du modèle PI ne sont pas très sensibles aux valeurs des paramètres utilisés. Il est également démontré comment le formalisme développé dans cet ouvrage pourrait permettre de définir un volume cible personnalisé pour les traitements de radiothérapie du GBM.
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
We study linear variable coefficient control problems in descriptor form. Based on a behaviour approach and the general theory for linear differential algebraic systems we give the theoretical analysis and describe numerically stable methods to determine the structural properties of the system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)