865 resultados para Linear parametric model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Bayesian probabilistic methodology for on-line structural health monitoring which addresses the issue of parameter uncertainty inherent in problem is presented. The method uses modal parameters for a limited number of modes identified from measurements taken at a restricted number of degrees of freedom of a structure as the measured structural data. The application presented uses a linear structural model whose stiffness matrix is parameterized to develop a class of possible models. Within the Bayesian framework, a joint probability density function (PDF) for the model stiffness parameters given the measured modal data is determined. Using this PDF, the marginal PDF of the stiffness parameter for each substructure given the data can be calculated.

Monitoring the health of a structure using these marginal PDFs involves two steps. First, the marginal PDF for each model parameter given modal data from the undamaged structure is found. The structure is then periodically monitored and updated marginal PDFs are determined. A measure of the difference between the calibrated and current marginal PDFs is used as a means to characterize the health of the structure. A procedure for interpreting the measure for use by an expert system in on-line monitoring is also introduced.

The probabilistic framework is developed in order to address the model parameter uncertainty issue inherent in the health monitoring problem. To illustrate this issue, consider a very simplified deterministic structural health monitoring method. In such an approach, the model parameters which minimize an error measure between the measured and model modal values would be used as the "best" model of the structure. Changes between the model parameters identified using modal data from the undamaged structure and subsequent modal data would be used to find the existence, location and degree of damage. Due to measurement noise, limited modal information, and model error, the "best" model parameters might vary from one modal dataset to the next without any damage present in the structure. Thus, difficulties would arise in separating normal variations in the identified model parameters based on limitations of the identification method and variations due to true change in the structure. The Bayesian framework described in this work provides a means to handle this parametric uncertainty.

The probabilistic health monitoring method is applied to simulated data and laboratory data. The results of these tests are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An economic air pollution control model, which determines the least cost of reaching various air quality levels, is formulated. The model takes the form of a general, nonlinear, mathematical programming problem. Primary contaminant emission levels are the independent variables. The objective function is the cost of attaining various emission levels and is to be minimized subject to constraints that given air quality levels be attained.

The model is applied to a simplified statement of the photochemical smog problem in Los Angeles County in 1975 with emissions specified by a two-dimensional vector, total reactive hydrocarbon, (RHC), and nitrogen oxide, (NOx), emissions. Air quality, also two-dimensional, is measured by the expected number of days per year that nitrogen dioxide, (NO2), and mid-day ozone, (O3), exceed standards in Central Los Angeles.

The minimum cost of reaching various emission levels is found by a linear programming model. The base or "uncontrolled" emission levels are those that will exist in 1975 with the present new car control program and with the degree of stationary source control existing in 1971. Controls, basically "add-on devices", are considered here for used cars, aircraft, and existing stationary sources. It is found that with these added controls, Los Angeles County emission levels [(1300 tons/day RHC, 1000 tons /day NOx) in 1969] and [(670 tons/day RHC, 790 tons/day NOx) at the base 1975 level], can be reduced to 260 tons/day RHC (minimum RHC program) and 460 tons/day NOx (minimum NOx program).

"Phenomenological" or statistical air quality models provide the relationship between air quality and emissions. These models estimate the relationship by using atmospheric monitoring data taken at one (yearly) emission level and by using certain simple physical assumptions, (e. g., that emissions are reduced proportionately at all points in space and time). For NO2, (concentrations assumed proportional to NOx emissions), it is found that standard violations in Central Los Angeles, (55 in 1969), can be reduced to 25, 5, and 0 days per year by controlling emissions to 800, 550, and 300 tons /day, respectively. A probabilistic model reveals that RHC control is much more effective than NOx control in reducing Central Los Angeles ozone. The 150 days per year ozone violations in 1969 can be reduced to 75, 30, 10, and 0 days per year by abating RHC emissions to 700, 450, 300, and 150 tons/day, respectively, (at the 1969 NOx emission level).

The control cost-emission level and air quality-emission level relationships are combined in a graphical solution of the complete model to find the cost of various air quality levels. Best possible air quality levels with the controls considered here are 8 O3 and 10 NO2 violations per year (minimum ozone program) or 25 O3 and 3 NO2 violations per year (minimum NO2 program) with an annualized cost of $230,000,000 (above the estimated $150,000,000 per year for the new car control program for Los Angeles County motor vehicles in 1975).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we tackle the problem of learning a linear regression model whose parameter is a fixed-rank matrix. We study the Riemannian manifold geometry of the set of fixed-rank matrices and develop efficient line-search algorithms. The proposed algorithms have many applications, scale to high-dimensional problems, enjoy local convergence properties and confer a geometric basis to recent contributions on learning fixed-rank matrices. Numerical experiments on benchmarks suggest that the proposed algorithms compete with the state-of-the-art, and that manifold optimization offers a versatile framework for the design of rank-constrained machine learning algorithms. Copyright 2011 by the author(s)/owner(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prediction of time-changing variances is an important task in the modeling of financial data. Standard econometric models are often limited as they assume rigid functional relationships for the evolution of the variance. Moreover, functional parameters are usually learned by maximum likelihood, which can lead to over-fitting. To address these problems we introduce GP-Vol, a novel non-parametric model for time-changing variances based on Gaussian Processes. This new model can capture highly flexible functional relationships for the variances. Furthermore, we introduce a new online algorithm for fast inference in GP-Vol. This method is much faster than current offline inference procedures and it avoids overfitting problems by following a fully Bayesian approach. Experiments with financial data show that GP-Vol performs significantly better than current standard alternatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We find that the Rashba spin splitting is intrinsically a nonlinear function of the momentum, and the linear Rashba model may overestimate it significantly, especially in narrow-gap semiconductors. A nonlinear Rashba model is proposed, which is in good agreement with the numerical results from the eight-band k center dot p theory. Using this model, we find pronounced suppression of the D'yakonov-Perel' spin relaxation rate at large electron densities, and a nonmonotonic dependence of the resonance peak position of the electron spin lifetime on the electron density in [111]-oriented quantum wells, both in qualitative disagreement with the predictions of the linear Rashba model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper proposes the identification method of linear and non-linear chromatographic system. The non-linear isotherms and lumped mass transfer coefficients of chromatography separating sorbitol and mannitol are determined. And the theoretical elution curves calculated by non-linear chromatographic model are more accurate than those calculated by linear chromatographic model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A non-linear lumped model of the reed-mouthpiece-lip system of a clarinet is formulated, in which the lumped parameters are derived from numerical experiments with a finite-difference simulation based on a distributed reed model. The effective stiffness per unit area is formulated as a function of the pressure signal driving the reed, in order to simulate the effects of the reed bending against the lay, and mass and damping terms are added as a first approximation to the dynamic behaviour of the reed. A discrete-time formulation is presented, and its response is compared to that of the distributed model. In addition, the lumped model is applied in the simulation of clarinet tones, enabling the analysis of the effects of using a pressure-dependent stiffness per unit area on sustained oscillations. The analysed effects and features are in qualitative agreement with players' experiences and experimental results obtained in prior studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.