925 resultados para Linear induction motor
Resumo:
Three-phase induction motors offer significant advantages over commutator motors in some domestic appliances. Models for wide speed range three-phase induction motors for use in a horizontal axis washing machine have been developed using the MEGA finite element package with an external formulation for calculating iron losses. Motor loss predictions have been verified using a novel high accuracy calorimeter. Good agreement has been observed over a wide speed range at different loadings. The model is used to predict motor temperature rise under typical washing machine loading conditions to ensure its limiting temperature is not exceeded and enables alternative designs to be investigated without recourse to physical prototypes. © 2005 IEEE.
Resumo:
This paper presents the results of an investigation into the impact of pulse width modulation (PWM) switching schemes on power losses in induction motors and their inverter drives. The PWM schemes considered include sinusoidal PWM, spacevector PWM and discontinuous PWM. Both experimental results and simulated predictions are presented for fractional horsepower and small integral horsepower motors. Direct loss measurements have been carried out using a calorimetric test rig; detailed simulations of the skewed motors have been carried out using multi-slice time-stepped 2D FEA. The simulated and measured losses under the different modulation schemes are compared and discussed. © 2006 IEEE.
Resumo:
Adopting square wave excitation to drive induction motors (IMs) can substantially reduce inverter switching losses. However, the low-order time harmonics inherent in the output voltage generates parasitic torques that degrade motor performance and reduce efficiency. In this paper, a novel harmonic elimination modulation technique with full voltage control is studied as an interesting and alternative means of operating small (<1kW) IM drives efficiently. A fully verified harmonic elimination scheme, which removes the 5th, 7th, 11th, 13th and 17 th time harmonics, was implemented and applied to an IGBT driven IM. The power losses incurred in the inverter and the IM as a result of the switching scheme have been determined. © 2008 Crown copyright.
Resumo:
An inherent trade-off exists in simulation model development and employment: a trade-off between the level of detail simulated and the simulation models computational cost. It is often desirable to simulate a high level of detail to a high degree of accuracy. However, due to the nature of design optimisation, which requires a large number of design evaluations, the application of such simulation models can be prohibitively expensive. A induction motor modelling approache to reduce the computational cost while maintaining a high level of detail and accuracy in the final design is presented. © 2012 IEEE.
Resumo:
Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.
Resumo:
This paper shows a new manner to establish the thrust of a linear induction machine. A new factor is established, named ''Relation Factor, which provides conditions to establish the thrust and other important variables of the linear and sector induction machines.
Resumo:
The behaviors of an arc-shaped stator induction machine (the sector-motor) and a disc-secondary linear induction motor are analyzed in this work for different values of the frequency. Variable frequency is produced by a voltage source controlled-current inverter which keeps constant the r.m.s. value of the phase current, also assuring a sinusoidal waveform. For the simulations of the machine developed thrust, an equivalent circuit is used. It is obtained through the application of the one-dimensional theory to the modeling. The circuit parameters take into account the end effects, always present is these kind of machines. The phase current waveforms are analyzed for their harmonic contents. Experimental measurements were carried out in laboratory and are presented with the simulations, for comparison.
Resumo:
Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.
Resumo:
The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].
Resumo:
This work presents an alternative approach based on neural network method in order to estimate speed of induction motors, using the measurement of primary variables such as voltage and current. Induction motors are very common in many sectors of the industry and assume an important role in the national energy policy. The nowadays methodologies, which are used in diagnosis, condition monitoring and dimensioning of these motors, are based on measure of the speed variable. However, the direct measure of this variable compromises the system control and starting circuit of an electric machinery, reducing its robustness and increasing the implementation costs. Simulation results and experimental data are presented to validate the proposed approach. © 2003-2012 IEEE.
Resumo:
Starting induction motors on isolated or weak systems is a highly dynamic process that can cause motor and load damage as well as electrical network fluctuations. Mechanical damage is associated with the high starting current drawn by a ramping induction motor. In order to compensate the load increase, the voltage of the electrical system decreases. Different starting methods can be applied to the electrical system to reduce these and other starting method issues. The purpose of this thesis is to build accurate and usable simulation models that can aid the designer in making the choice of an appropriate motor starting method. The specific case addressed is the situation where a diesel-generator set is used as the electrical supplied source to the induction motor. The most commonly used starting methods equivalent models are simulated and compared to each other. The main contributions of this thesis is that motor dynamic impedance is continuously calculated and fed back to the generator model to simulate the coupling of the electrical system. The comparative analysis given by the simulations has shown reasonably similar characteristics to other comparative studies. The diesel-generator and induction motor simulations have shown good results, and can adequately demonstrate the dynamics for testing and comparing the starting methods. Further work is suggested to refine the equivalent impedance presented in this thesis.
Resumo:
This work proposes the development of an Adaptive Neuro-fuzzy Inference System (ANFIS) estimator applied to speed control in a three-phase induction motor sensorless drive. Usually, ANFIS is used to replace the traditional PI controller in induction motor drives. The evaluation of the estimation capability of the ANFIS in a sensorless drive is one of the contributions of this work. The ANFIS speed estimator is validated in a magnetizing flux oriented control scheme, consisting in one more contribution. As an open-loop estimator, it is applied to moderate performance drives and it is not the proposal of this work to solve the low and zero speed estimation problems. Simulations to evaluate the performance of the estimator considering the vector drive system were done from the Matlab/Simulink(R) software. To determine the benefits of the proposed model, a practical system was implemented using a voltage source inverter (VSI) to drive the motor and the vector control including the ANFIS estimator, which is carried out by the Real Time Toolbox from Matlab/Simulink(R) software and a data acquisition card from National Instruments.