985 resultados para Linear Algebra
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.
Resumo:
We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’introduction aux concepts unificateurs dans l’enseignement des mathématiques privilégie typiquement l’approche axiomatique. Il n’est pas surprenant de constater qu’une telle approche tend à une algorithmisation des tâches pour augmenter l’efficacité de leur résolution et favoriser la transparence du nouveau concept enseigné (Chevallard, 1991). Cette réponse classique fait néanmoins oublier le rôle unificateur du concept et n’encourage pas à l’utilisation de sa puissance. Afin d’améliorer l’apprentissage d’un concept unificateur, ce travail de thèse étudie la pertinence d’une séquence didactique dans la formation d’ingénieurs centrée sur un concept unificateur de l’algèbre linéaire: la transformation linéaire (TL). La notion d’unification et la question du sens de la linéarité sont abordées à travers l’acquisition de compétences en résolution de problèmes. La séquence des problèmes à résoudre a pour objet le processus de construction d’un concept abstrait (la TL) sur un domaine déjà mathématisé, avec l’intention de dégager l’aspect unificateur de la notion formelle (Astolfi y Drouin, 1992). À partir de résultats de travaux en didactique des sciences et des mathématiques (Dupin 1995; Sfard 1991), nous élaborons des situations didactiques sur la base d’éléments de modélisation, en cherchant à articuler deux façons de concevoir l’objet (« procédurale » et « structurale ») de façon à trouver une stratégie de résolution plus sûre, plus économique et réutilisable. En particulier, nous avons cherché à situer la notion dans différents domaines mathématiques où elle est applicable : arithmétique, géométrique, algébrique et analytique. La séquence vise à développer des liens entre différents cadres mathématiques, et entre différentes représentations de la TL dans les différents registres mathématiques, en s’inspirant notamment dans cette démarche du développement historique de la notion. De plus, la séquence didactique vise à maintenir un équilibre entre le côté applicable des tâches à la pratique professionnelle visée, et le côté théorique propice à la structuration des concepts. L’étude a été conduite avec des étudiants chiliens en formation au génie, dans le premier cours d’algèbre linéaire. Nous avons mené une analyse a priori détaillée afin de renforcer la robustesse de la séquence et de préparer à l’analyse des données. Par l’analyse des réponses au questionnaire d’entrée, des productions des équipes et des commentaires reçus en entrevus, nous avons pu identifier les compétences mathématiques et les niveaux d’explicitation (Caron, 2004) mis à contribution dans l’utilisation de la TL. Les résultats obtenus montrent l’émergence du rôle unificateur de la TL, même chez ceux dont les habitudes en résolution de problèmes mathématiques sont marquées par une orientation procédurale, tant dans l’apprentissage que dans l’enseignement. La séquence didactique a montré son efficacité pour la construction progressive chez les étudiants de la notion de transformation linéaire (TL), avec le sens et les propriétés qui lui sont propres : la TL apparaît ainsi comme un moyen économique de résoudre des problèmes extérieurs à l’algèbre linéaire, ce qui permet aux étudiants d’en abstraire les propriétés sous-jacentes. Par ailleurs, nous avons pu observer que certains concepts enseignés auparavant peuvent agir comme obstacles à l’unification visée. Cela peut ramener les étudiants à leur point de départ, et le rôle de la TL se résume dans ces conditions à révéler des connaissances partielles, plutôt qu’à guider la résolution.
Resumo:
Lecture slides, handouts for tutorials, exam papers, and numerical examples for a third year course on Control System Design.
Resumo:
Reading group on diverse topics of interest for the Information: Signals, Images, Systems (ISIS) Research Group of the School of Electronics and Computer Science, University of Southampton.
Resumo:
Se presenta el análisis de sensibilidad de un modelo de percepción de marca y ajuste de la inversión en marketing desarrollado en el Laboratorio de Simulación de la Universidad del Rosario. Este trabajo de grado consta de una introducción al tema de análisis de sensibilidad y su complementario el análisis de incertidumbre. Se pasa a mostrar ambos análisis usando un ejemplo simple de aplicación del modelo mediante la aplicación exhaustiva y rigurosa de los pasos descritos en la primera parte. Luego se hace una discusión de la problemática de medición de magnitudes que prueba ser el factor más complejo de la aplicación del modelo en el contexto práctico y finalmente se dan conclusiones sobre los resultados de los análisis.
Resumo:
Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package Maple®.
Resumo:
Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.
Resumo:
Many natural and technological applications generate time ordered sequences of networks, defined over a fixed set of nodes; for example time-stamped information about ‘who phoned who’ or ‘who came into contact with who’ arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time’s arrow is captured naturally through the non-mutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.
Resumo:
This paper introduces a method for simulating multivariate samples that have exact means, covariances, skewness and kurtosis. We introduce a new class of rectangular orthogonal matrix which is fundamental to the methodology and we call these matrices L matrices. They may be deterministic, parametric or data specific in nature. The target moments determine the L matrix then infinitely many random samples with the same exact moments may be generated by multiplying the L matrix by arbitrary random orthogonal matrices. This methodology is thus termed “ROM simulation”. Considering certain elementary types of random orthogonal matrices we demonstrate that they generate samples with different characteristics. ROM simulation has applications to many problems that are resolved using standard Monte Carlo methods. But no parametric assumptions are required (unless parametric L matrices are used) so there is no sampling error caused by the discrete approximation of a continuous distribution, which is a major source of error in standard Monte Carlo simulations. For illustration, we apply ROM simulation to determine the value-at-risk of a stock portfolio.
Resumo:
The concepts of rank, underdetermined systems and consistency in linear algebra are discussed in the context of a puzzle. The article begins with a specific example, moving on to a generalization of the example and then to the general n x n case. As well as providing a solution of the puzzle, the article aims to provide students with a greater understanding of these abstract ideas in linear algebra through the study of the puzzle.
Resumo:
This paper surveys numerical techniques for the regularization of descriptor (generalized state-space) systems by proportional and derivative feedback. We review generalizations of controllability and observability to descriptor systems along with definitions of regularity and index in terms of the Weierstraß canonical form. Three condensed forms display the controllability and observability properties of a descriptor system. The condensed forms are obtained through orthogonal equivalence transformations and rank decisions, so they may be computed by numerically stable algorithms. In addition, the condensed forms display whether a descriptor system is regularizable, i.e., when the system pencil can be made to be regular by derivative and/or proportional output feedback, and, if so, what index can be achieved. Also included is a a new characterization of descriptor systems that can be made to be regular with index 1 by proportional and derivative output feedback.
Resumo:
The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.