995 resultados para Light-front propagator pole


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette étude explore la transformation des critères normatifs qui donnent accès au statut de femmes respectables à travers le concept de nouveau sujet féminin discuté par Radner (1999), Gill (2008; 2012) et McRobbie (1993; 2009) où l’idée de recherche active de « sexiness » chez les femmes à l’époque contemporaine est centrale. Le post-féminisme, une formation discursive qui émerge dans les années 1980, est identifié comme étant à l’origine de ces transformations. Cette position identitaire permettrait aux femmes de résister aux stigmates attachés à celles qui se posent comme sujet sexuel actif plutôt que comme objet sexuel passif et conduirait ainsi à l’« empowerment » sexuel. Or, cette vision du nouveau sujet féminin est contestée puisqu’elle ne représenterait qu’une seule possibilité d’émancipation à travers le corps et deviendrait par sa force normative un nouveau régime disciplinaire du genre féminin. L’interprétation valable à donner au nouveau sujet féminin représente un débat polarisé dans les milieux féministes et ce mémoire cherche à y apporter des éléments de discussion par l’étude des motivations des femmes à s’inscrire à des cours de pole-fitness et des significations qu’elles donnent à leur pratique. Ce mémoire apporte des éléments à la compréhension de l’impact de cette recherche de « sexiness » sur la subjectivité des femmes à travers les concepts de pratiques disciplinaires et stratégies de résistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a new automotive wheel requires extensive testing and possible design changes. The wheel investigated had three major changes during development. These three designs were subjected to a stress analysis, by experimental methods, to allow a comparison to be made between each design. The experimental program tested the wheels under conditions designed to simulate the loading of the front wheels whilst cornering. A loading frame was built for this purpose and all testing was performed statically by multiple loading for different directions of bending moment. Brittle lacquer coatings were used on each wheel to highlight high strain areas and indicate optimum locations for the placement of strain gauges. The strain gauges were then used to evaluate the strains. Wheel stud loads were also monitored via strain gauges applied to two of the wheel studs. All data was stored on magnetic tapes and the stress analysis performed by means of a minicomputer. The results of the stress analysis showed quantitatively the improvement in design from the first to the third wheel design. The analysis of the stud loads and their variation during loading indicated the optimum wheel mounting face geometry to ensure nut loosening would not occur in service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Cost-effectiveness analyses are important tools in efforts to prioritise interventions for obesity prevention.
Modelling facilitates evaluation of multiple scenarios with varying assumptions. This study compares the cost-effectiveness of
conservative scenarios for two commonly proposed policy-based interventions: front-of-pack ‘traffic-light’ nutrition labelling
(traffic-light labelling) and a tax on unhealthy foods (‘junk-food’ tax).
Methods: For traffic-light labelling, estimates of changes in energy intake were based on an assumed 10% shift in consumption
towards healthier options in four food categories (breakfast cereals, pastries, sausages and preprepared meals) in 10% of adults. For the ‘junk-food’ tax, price elasticities were used to estimate a change in energy intake in response to a 10% price increase in seven food categories (including soft drinks, confectionery and snack foods). Changes in population weight and body mass index by sex were then estimated based on these changes in population energy intake, along with subsequent impacts on disability-adjusted life years (DALYs). Associated resource use was measured and costed using pathway analysis, based on a health sector perspective (with some industry costs included). Costs and health outcomes were discounted at 3%. The cost-effectiveness of each intervention was modelled for the 2003 Australian adult population.
Results: Both interventions resulted in reduced mean weight (traffic-light labelling: 1.3 kg (95% uncertainty interval (UI): 1.2;
1.4); ‘junk-food’ tax: 1.6 kg (95% UI: 1.5; 1.7)); and DALYs averted (traffic-light labelling: 45 100 (95% UI: 37 700; 60 100);
‘junk-food’ tax: 559 000 (95% UI: 459 500; 676 000)). Cost outlays were AUD81 million (95% UI: 44.7; 108.0) for traffic-light
labelling and AUD18 million (95% UI: 14.4; 21.6) for ‘junk-food’ tax. Cost-effectiveness analysis showed both interventions were
‘dominant’ (effective and cost-saving).
Conclusion: Policy-based population-wide interventions such as traffic-light nutrition labelling and taxes on unhealthy foods are
likely to offer excellent ‘value for money’ as obesity prevention measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices - prescriptions - some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. and this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present a possible way to relate the method of covariantizing the gauge-dependent pole and the negative dimensional integration method for computing Feynman integrals pertinent to the light-cone gauge fields. Both techniques are applicable to the algebraic light-cone gauge and dispense with prescriptions to treat the characteristic poles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of bulk light absorption on running photorefractive holograms is investigated. By solving the coupled wave equations we prove that the beam intensities, but not the beam phases, can be calculated by averaging the coupling constant over the crystal thickness. We show the importance of the effect by calculating the dielectric relaxation time at the crystal front, and from that the quantum efficiency from a feedback-controlled experiment with a 2.05 mm thick BTO crystal.We propose to simulate the effect of bulk light absorption by a rude estimate of the average dielectric relaxation time which is related in a simple way to the dielectric relaxation time at the crystal front, in doing so an error of less than 10% is introduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the negative dimensional integration method (NDIM) to three outstanding gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that NDIM is a very suitable technique to deal with loop integrals, regardless of which gauge choice that originated them. In the Feynman gauge we perform scalar two-loop four-point massless integrals; in the light-cone gauge we calculate scalar two-loop integrals contributing to two-point functions without any kind of prescriptions, since NDIM can abandon such devices - this calculation is the first test of our prescriptionless method beyond one-loop order; and finally, for the Coulomb gauge we consider a four-propagator massless loop integral, in the split-dimensional regularization context. © 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.