998 resultados para Ligand design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an effective approach for the construction of a biomimetic sensor of multicopper oxidases by immobilizing a cyclic-tetrameric copper(II) species, containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), in the Nafion (R) membrane on a vitreous carbon electrode surface. This complex provides a tetranuclear arrangement of copper ions that allows an effective reduction of oxygen to water, in a catalytic cycle involving four electrons. The electrochemical reduction of oxygen was studied at pH 9.0 buffer solution by using cyclic voltammetry, chronoamperometry, rotating disk electrode voltammetry and scanning electrochemical microscopy techniques. The mediator shows good electrocatalytic ability for the reduction of O(2) at pH 9.0, with reduction of overpotential (350 mV) and increased current response in comparison with results obtained with a bare glassy carbon electrode. The heterogeneous rate constant (k(ME)`) for the reduction of O(2) at the modified electrode was determined by using a Koutecky-Levich plot. In addition, the charge transport rate through the coating and the apparent diffusion coefficient of O(2) into the modifier film were also evaluated. The overall process was found to be governed by the charge transport through the coating, occurring at the interface or at a finite layer at the electrode/coating interface. The proposed study opens up the way for the development of bioelectronic devices based on molecular recognition and self-organization. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcantilever biosensors produce cantilever bending due to differential surface stress between upper and lower surfaces of the cantilever. The bending is associated with concentration of ligands and adsorbed ligand-receptor intermolecular forces. Sample volume sizes in clinical diagnostic applications are usually very minute requiring a highly sensitive microcantilever for disease detection. This paper investigates a number of parameters that influence the sensitivity of microcantilever biosensors. The parameters include length, thickness, shape, and material of the cantilever beam. Biosensors of varying parameters are modeled and simulated. The results show that increasing the length of the cantilever beam enhances its sensitivity. However, increasing the thickness of the cantilever beam reduces its sensitivity. In static analysis, the shape of the cantilever beam does not notably impact upon its sensitivity. Also, using materials with lower Young’s modulus improves the sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar), that forms copper complexes of exceptional stability by virtue of a cage amine (sarcophagine) ligand and a new conjugate referred to as SarTATE, obtained by the conjugation of MeCOSar to the tumour-targeting peptide Tyr(3)-octreotate. Radiolabeling of SarTATE with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (~20 min), easily performed at room temperature and consistently resulted in high radiochemical purity (>99%). In vitro and in vivo evaluation of (64)CuSarTATE demonstrated its high selectivity for tumour cells expressing somatostatin receptor 2 (sstr2). Biodistribution and PET imaging comparisons were made between (64)CuSarTATE and (64)Cu-labeled DOTA-Tyr(3)-octreotate ((64)CuDOTATATE). Both radiopharmaceuticals showed excellent uptake in sstr2-positive tumours at 2 h post-injection. While tumour uptake of (64)CuDOTATATE decreased significantly at 24 h, (64)CuSarTATE activity was retained, improving contrast at later time points. (64)CuSarTATE accumulated less than (64)CuDOTATATE in the non-target organs, liver and lungs. The uptake of (64)CuSarTATE in the kidneys was high at 2 h but showed significant clearance by 24 h. The new chemistry and pre-clinical evaluation presented here demonstrates that MeCOSar is a promising bifunctional chelator for Tyr(3)-octreotate that could be applied to a combined imaging and therapeutic regimen using a combination of (64)Cu- and (67)CuSarTATE complexes, owing to improved tumour-to-non-target organ ratios compared to (64)CuDOTATATE at longer time points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between m(s) = +/- 1/2 (geff-9) or m(s) = +/- 3/2 (g(eff)similar to 4.3) states. Mossbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H(37)Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the "second-line" therapeutic drugs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the local and systemic expression of CC-chemokine ligand 3 (CCL3) and its receptors (CCR1 and CCR5) in tissue samples and peripheral blood mononuclear cells of recurrent aphthous stomatitis (RAS) patients. Study Design. This case-control study enrolled 29 patients presenting severe RAS manifestations and 20 non-RAS patients proportionally matched by sex and age. Total RNA was extracted from biopsy specimens and peripheral blood mononuclear cells for quatitative reverse-transcription polymerase chain reaction. The data obtained by relative quantification were evaluated by the 2(-Delta Delta Ct) method, normalized by the expression of an endogenous control, and analyzed by Student t test. Results. The results demonstrated overexpression in RAS tissue samples of all of the chemokines evaluated compared with healthy oral mucosa, whereas the blood samples showed only CCR1 overexpression in RAS patients. Conclusions. These findings suggest that the increased expression of CCL3, CCR1, and CCR5 may influence the immune response in RAS by T(H)1 cytokine polarization. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:93-98)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective modulation of liver X receptor beta (LXR beta) has been recognized as an important approach to prevent or reverse the atherosclerotic process. In the present work, we have developed robust conformation-independent fragment-based quantitative structure-activity and structure-selectivity relationship models for a series of quinolines and cinnolines as potent modulators of the two LXR sub-types. The generated models were then used to predict the potency of an external test set and the predicted values were in good agreement with the experimental results, indicating the potential of the models for untested compounds. The final 2D molecular recognition patterns obtained were integrated to 3D structure-based molecular modeling studies to provide useful insights into the chemical and structural determinants for increased LXR beta binding affinity and selectivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented herein is the design of a dinuclear Ni-II synthetic hydrolase [Ni-2(HBPPAMFF)(mu-OAc)(2)(H2O)]-BPh4 (1) (H(2)BPPAMFF = 2-[(N-benzyl-N-2-pyridylmethylamine)]-4-methyl-6-[N-(2-pyridylmethyl)aminomethyl)])-4- methyl-6-formylphenol) to be covalently attached to silica surfaces, while maintaining its catalytic activity. An aldehyde-containing ligand (H(2)BPPAMFF) provides a reactive functional group that can serve as a cross-linking group to bind the complex to an organoalkoxysilane and later to the silica surfaces or directly to amino-modified surfaces. The dinuclear Ni-II complex covalently attached to the silica surfaces was fully characterized by different techniques. The catalytic turnover number (k(cat)) of the immobilized (NiNiII)-Ni-II catalyst in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate is comparable to the homogeneous reaction; however, the catalyst interaction with the support enhanced the substrate to complex association constant, and consequently, the catalytic efficiency (E - k(cat)/K-M) and the supported catalyst can be reused for subsequent diester hydrolysis reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bromodomains are epigenetic reader domains that have recently become popular targets. In contrast to BET bromodomains, which have proven druggable, bromodomains from other regions of the phylogenetic tree have shallower pockets. We describe successful targeting of the challenging BAZ2B bromodomain using biophysical fragment screening and structure-based optimization of high ligand-efficiency fragments into a novel series of low-micromolar inhibitors. Our results provide attractive leads for development of BAZ2B chemical probes and indicate the whole family may be tractable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.