979 resultados para Leucine-zipper
Resumo:
An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^
Resumo:
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Resumo:
Endo-β-mannanases (MAN; EC. 3.2.1.78) catalyze the cleavage of β1[RIGHTWARDS ARROW]4 bonds in mannan polymers and have been associated with the process of weakening the tissues surrounding the embryo during seed germination. In germinating Arabidopsis thaliana seeds, the most highly expressed MAN gene is AtMAN7 and its transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in AtMAN7 have a slower germination than the wild type. To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae MAN7 gene promoters has been done, and these conserved motifs have been used as bait to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library from A. thaliana. The basic-leucine zipper TF AtbZIP44, but not the closely related AtbZIP11, has thus been identified and its transcriptional activation upon AtMAN7 has been validated at the molecular level. In the knock-out lines of AtbZIP44, not only is the expression of the AtMAN7 gene drastically reduced, but these mutants have a significantly slower germination than the wild type, being affected in the two phases of the germination process, both in the rupture of the seed coat and in the breakage of the micropylar endosperm cell walls. In the over-expression lines the opposite phenotype is observed.
Resumo:
During seed germination, the endosperm cell walls (CWs) suffer an important weakening process mainly driven by hydrolytic enzymes, such are endo-?- mannanases (MAN; EC. 3.2.1.78) that catalyze the cleavage of ?1?4 bonds in the mannan-polymers. In Arabidopsis thaliana seeds, endo-?-mannanase activity increases during seed imbibition, decreasing after radicle emergence1. AtMAN7 is the most highly expressed MAN gene in seeds upon germination and their transcripts are restricted to the micropylar endosperm and to the radicle tip just before radicle emergence. Mutants with a T-DNA insertion in this gene (K.O. MAN7) have a slower germination rate than the wild type (t50=34 h versus t50=25 h). To gain insight into the transcriptional regulation of the AtMAN7 gene, a bioinformatic search for conserved non-coding cis-elements (phylogenetic shadowing) within the Brassicaceae orthologous MAN7 gene promoters has been done and these conserved motives have been used as baits to look for their interacting transcription factors (TFs), using as a prey an arrayed yeast library of circa 1,200 TFs from A. thaliana. The basic leucine zipper AtbZIP44, but not its closely related ortholog AtbZIP11, has been thus identified and its regulatory function upon AtMAN7 during seed germination validated by different molecular and physiological techniques, such are RT-qPCR analyses, mRNA Fluorescence in situ Hybridization (FISH) experiments, and by the establishment of the germination kinetics of both over-expression (oex) lines and TDNA insertion mutants in AtbZIP44. The transcriptional combinatorial network through which AtbZIP44 regulates AtMAN7 gene expression during seed germination has been further explored through protein-protein interactions between AtbZIP44 and other bZIP members. In such a way, AtbZIP9 has been identified by yeast two-hybrid experiments and its physiological implication in the control of AtMAN7 expression similarly established.
Resumo:
Reassembly of enzymes from peptide fragments has been used as a strategy for understanding the evolution, folding, and role of individual subdomains in catalysis and regulation of activity. We demonstrate an oligomerization-assisted enzyme reassembly strategy whereby fragments are covalently linked to independently folding and interacting domains whose interactions serve to promote efficient refolding and complementation of fragments, forming active enzyme. We show that active murine dihydrofolate reductase (E.C. 1.5.1.3) can be reassembled from complementary N- and C-terminal fragments when fused to homodimerizing GCN4 leucine zipper-forming sequences as well as heterodimerizing protein partners. Reassembly is detected by an in vivo selection assay in Escherichia coli and in vitro. The effects of mutations that disrupt fragment affinity or enzyme activity were assessed. The steady–state kinetic parameters for the reassembled mutant (Phe-31 → Ser) were determined; they are not significantly different from the full-length mutant. The strategy described here provides a general approach for protein dissection and domain swapping studies, with the capacity both for rapid in vivo screening as well as in vitro characterization. Further, the strategy suggests a simple in vivo enzyme-based detection system for protein–protein interactions, which we illustrate with two examples: ras–GTPase and raf–ras-binding domain and FK506-binding protein-rapamycin complexed with the target of rapamycin TOR2.
Resumo:
The gene for hSK4, a novel human small conductance calcium-activated potassium channel, or SK channel, has been identified and expressed in Chinese hamster ovary cells. In physiological saline hSK4 generates a conductance of approximately 12 pS, a value in close agreement with that of other cloned SK channels. Like other members of this family, the polypeptide encoded by hSK4 contains a previously unnoted leucine zipper-like domain in its C terminus of unknown function. hSK4 appears unique, however, in its very high affinity for Ca2+ (EC50 of 95 nM) and its predominant expression in nonexcitable tissues of adult animals. Together with the relatively low homology of hSK4 to other SK channel polypeptides (approximately 40% identical), these data suggest that hSK4 belongs to a novel subfamily of SK channels.
Resumo:
Activation of gene transcription in eukaryotes requires the cooperative assembly of an initiation complex containing many protein subunits. The necessity that these components contact each other and the promoter/enhancer in defined ways suggests that their spatial arrangement might influence the activation response. Indeed, growing evidence indicates that DNA architecture can profoundly affect transcriptional potency. Much less is known about the influence of protein architecture on transcriptional activation. Here, we examine the architectural dependence of activator function through the analysis of matched pairs of AP-1•DNA complexes differing only in their orientation. Mutation of a critical Arg residue in the basic-leucine zipper domain of either Fos or Jun yielded single point-mutant heterodimers that bind DNA in a single defined orientation, as determined directly by native chemical ligation/affinity cleavage; by contrast, the corresponding wild-type protein binds DNA as a roughly equal mixture of two isomeric orientations, which are related by subunit interchange. The stereochemistry of the point-mutant heterodimers could be switched by inversion of a C•G base pair in the center of the AP-1 site, thus providing access to both fixed orientational isomers. Yeast reporter gene assays consistently revealed that one orientational isomer activates transcription at least 10-fold more strongly than the other. These results suggest that protein architecture, especially the spatial relationship of the activation domain to the promoter, can exert a powerful influence on activator potency.
Resumo:
The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) coordinately regulate cytokine gene expression in activated T-cells by binding to closely juxtaposed sites in cytokine promoters. The structural basis for cooperative binding of NFAT and AP-1 to these sites, and indeed for the cooperative binding of transcription factors to composite regulatory elements in general, is not well understood. Mutagenesis studies have identified a segment of AP-1, which lies at the junction of its DNA-binding and dimerization domains (basic region and leucine zipper, respectively), as being essential for protein–protein interactions with NFAT in the ternary NFAT/AP-1/DNA complex. In a model of the ternary complex, the segment of NFAT nearest AP-1 is the Rel insert region (RIR), a feature that is notable for its hypervariability in size and in sequence amongst members of the Rel transcription factor family. Here we have used mutational analysis to study the role of the NFAT RIR in binding to DNA and AP-1. Parallel yeast one-hybrid screening assays in combination with alanine-scanning mutagenesis led to the identification of four amino acid residues in the RIR of NFAT2 (also known as NFATC1 or NFATc) that are essential for cooperativity with AP-1 (Ile-544, Glu-545, Thr-551, and Ile-553), and three residues that are involved in interactions with DNA (Lys-538, Arg-540, and Asn-541). These results were confirmed and extended through in vitro binding assays. We thus conclude that the NFAT RIR plays an essential dual role in DNA recognition and cooperative binding to AP-1 family transcription factors.
Resumo:
A natural (evolutionary) classification is provided for 242 basic helix–loop–helix (bHLH) motif-containing proteins. Phylogenetic analyses of amino acid sequences describe the patterns of evolutionary change within the motif and delimit evolutionary lineages. These evolutionary lineages represent well known functional groups of proteins and can be further arranged into five groups based on binding to DNA at the hexanucleotide E-box, the amino acid patterns in other components of the motif, and the presence/absence of a leucine zipper. The hypothesized ancestral amino acid sequence for the bHLH transcription factor family is given together with the ancestral sequences of the subgroups. It is suggested that bHLH proteins containing a leucine zipper are not a natural, monophyletic group.
Resumo:
The transcription factor VP1 regulates maturation and dormancy in plant seeds by activating genes responsive to the stress hormone abscisic acid (ABA). Although activation involves ABA-responsive elements (ABREs), VP1 itself does not specifically bind ABREs. Instead, we have identified and cloned a basic region leucine zipper (bZIP) factor, TRAB1, that interacts with both VP1 and ABREs. Transcription from a chimeric promoter with GAL4-binding sites was ABA-inducible if cells expressed a GAL4 DNA-binding domain∷TRAB1 fusion protein. Results indicate that TRAB1 is a true trans-acting factor involved in ABA-regulated transcription and reveal a molecular mechanism for the VP1-dependent, ABA-inducible transcription that controls maturation and dormancy in plant embryos.
Resumo:
Large quantities of DNA sequence information about plant genes are rapidly accumulating in public databases, but to progress from DNA sequence to biological function a mutant allele for each of the genes ideally should be available. Here we describe a gene trap construct that allowed us to disrupt transcribed genes with a high efficiency in Arabidopsis thaliana. In the T-DNA vector used, the expression of a bacterial reporter gene coding for neomycin phosphotransferase II (nptII) depends on the in vivo generation of a translation fusion upon the T-DNA integration into the Arabidopsis genome. Analysis of 20 selected transgenic lines showed that 12 lines are T-DNA insertion mutants. The disrupted genes analyzed encoded ribosomal proteins (three lines), aspartate tRNA synthase, DNA ligase, basic-domain leucine zipper DNA binding protein, ATP-binding cassette transporter, and five proteins of unknown function. Four tagged genes were new for Arabidopsis. The results presented here suggest that gene trapping, using nptII as a reporter gene, can be as high as 80% and opens novel perspectives for systematic gene tagging in A. thaliana.
Resumo:
The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions.
Resumo:
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.
Resumo:
Photoreceptors of the Xenopus laevis retina are the site of a circadian clock. As part of a differential display screen for rhythmic gene products in this system, we have identified a photoreceptor-specific mRNA expressed in peak abundance at night. cDNA cloning revealed an open reading frame encoding a putative 388 amino acid protein that we have named “nocturnin” (for night-factor). This protein has strong sequence similarity to the C-terminal domain of the yeast transcription factor, CCR4, as well as a leucine zipper-like dimerization motif. Nocturnin mRNA levels exhibit a high amplitude circadian rhythm and nuclear run-on analysis indicates that it is controlled by the retinal circadian clock at the level of transcription. Our observations suggest that nocturnin may function through protein–protein interaction either as a component of the circadian clock or as a downstream effector of clock function.
Resumo:
The pir gene of plasmid R6K encodes the protein, π, a replication and transcription factor. Two translational options for the pir gene give rise to two forms of π protein: a 35.0-kDa form (π35.0) and a shortened 30.5-kDa form (π30.5). Although both proteins bind to a series of 22-bp direct repeats essential for plasmid R6K replication, only π35.0 can bind to a site in the (A⋅T)-rich segment of its γ ori and activate the γ ori in vivo and in vitro. However, unlike π35.0, π30.5can inhibit in vivo and in vitro replication (activated by π35.0). We propose that the two forms of π might have distinct functions in replication. We show that although both forms of π produce dimers, the nature of these dimers is not identical. The N-terminal 37 amino acid residues appear to control the formation of the more stable π35.0 dimers, whereas another, apparently weaker interface holds together dimers of π30.5. We speculate that the leucine zipper-like motif, absent in π30.5, controls very specific functions of π protein.