1000 resultados para Leonard Field
Resumo:
Standardised testing does not recognise the creativity and skills of marginalised youth. This paper presents the development of an innovative approach to assessment designed for the re-engagement of at risk youth who have left formal schooling and are now in an alternative education institution. An electronic portfolio system (EPS) has been developed to capture, record and build on the broad range of students’ cultural and social capital. The assessment as a field of exchange model draws on categories from sociological fields of capital and reconceptualises an eportfolio and social networking hybrid system as a sociocultural zone of learning and development. The EPS, and assessment for learning more generally, are conceptualised as social fields for the exchange of capital (Bourdieu 1977, 1990). The research is underpinned by a sociocultural theoretical perspective that focuses on how students and teachers at the Flexible Learning Centre (FLC) develop and learn, within the zone of proximal development (Vygotsky, 1978). The EPS is seen to be highly effective in the engagement and social interaction between students, teachers and institutions. It is argued throughout this paper that the EPS provides a structurally identifiable space, an arena of social activity, or a field of exchange. The students, teachers and the FLC within this field are producing cultural capital exchanges. The term efield (exchange field) has been coined to refer to this constructed abstract space. Initial results from the trial show a general tendency towards engagement with the EPS and potential for the attainment of socially valued cultural capital in the form of school credentials.
Resumo:
Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.
Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing
Resumo:
In this paper, the effect of electric field enhancement on Pt/nanostructured ZnO Schottky diode based hydrogen sensors under reverse bias condition has been investigated. Current-voltage characteristics of these diodes have been studied at temperatures from 25 to 620 °C and their free carrier density concentration was estimated by exposing the sensors to hydrogen gas. The experimental results show a significantly lower breakdown voltage in reversed bias current-voltage characteristics than the conventional Schottky diodes and also greater lateral voltage shift in reverse bias operation than the forward bias. This can be ascribed to the increased localized electric fields emanating from the sharp edges and corners of the nanostructured morphologies. At 620 °C, voltage shifts of 114 and 325 mV for 0.06% and 1% hydrogen have been recorded from dynamic response under the reverse bias condition. © 2010 Elsevier B.V. All rights reserved.