991 resultados para Leiocassis longirostris (Gunther)
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Over the past decade our understanding of foot function has increased significantly[1,2]. Our understanding of foot and ankle biomechanics appears to be directly correlated to advances in models used to assess and quantify kinematic parameters in gait. These advances in models in turn lead to greater detail in the data. However, we must consider that the level of complexity is determined by the question or task being analysed. This systematic review aims to provide a critical appraisal of commonly used marker sets and foot models to assess foot and ankle kinematics in a wide variety of clinical and research purposes.
Resumo:
When compared with similar joint arthroplasties, the prognosis of Total Ankle Replacement (TAR) is not satisfactory although it shows promising results post surgery. To date, most models do not provide the full anatomical functionality and biomechanical range of motion of the healthy ankle joint. This has sparked additional research and evaluation of clinical outcomes in order to enhance ankle prosthesis design. However, the limited biomechanical data that exist in literature are based upon two-dimensional, discrete and outdated techniques1 and may be inaccurate. Since accurate force estimations are crucial to prosthesis design, a paper based on a new biomechanical modeling approach, providing three dimensional forces acting on the ankle joint and the surrounding tissues was published recently, but the identified forces were suspected of being under-estimated, while muscles were . The present paper reports an attempt to improve the accuracy of the analysis by means of novel methods for kinematic processing of gait data, provided in release 4.1 of the AnyBody Modeling System (AnyBody Technology, Aalborg, Denmark) Results from the new method are shown and remaining issues are discussed.
Resumo:
When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.