997 resultados para Leg Raising Test
Resumo:
Woodlark Basin, an area of continental extension, is an ideal location to study the evolution of permeability and the development of overpressures within an active rift basin. In this investigation, we measured sediment permeabilities of cores from Woodlark Basin and used numerical modeling to determine if pore fluid overpressures are likely at the base of the rift basin. Constant-rate flow tests were conducted on cores from Site 1108, located in the rift basin, and Sites 1115 and 1118, located on the northern margin of the basin. Results of the laboratory tests indicated permeabilities that range from 1.5 x 10**-18 to 1 x 10**-16 m**2. Results of the numerical modeling of Site 1108 suggest that overpressures due to sedimentation are unlikely.
Resumo:
The geochemistry of basalts recovered from seven sites in the North Atlantic is described with particular reference to minor elements. Three sites (407, 408, and 409) along the same mantle flow line, transverse to the Reykjanes Ridge at about 63°N, provide information on the composition of basalts erupted over a 34-m.y. interval between 2.3 and 36 m.y. ago. At Site 410, at 45°N, penetration into 10 m.y.-old crust west of the ridge axis permits comparisons with young basalts dredged from the median valley at 45°N. Three sites in the FAMOUS area at about 36°N provided material from very young (1 m.y.) basaltic crust (Site 411), and material to test the geochemical coherence of basalts of different ages (1.5 and 3.5 m.y.) on either side of a fracture zone (Sites 412 and 413). These sites complement earlier data from dredged and drilled sites (Leg 37) in the FAMOUS area. At Site 407, four geochemically distinct basalt units occur, with different normative and rare-earth element (REE) characteristics, and there is a clear correlation with magnetic stratigraphy. Yet there is a remarkable consistency in incompatible element ratios between these units, indicating derivation from an essentially similar mantle source. The basalts from the younger sites, 408 and 409, show a similar range of normative and REE variation, but incompatible element ratios are identical to those at Site 407, indicating that basalts at all three sites were produced from a mantle source which was geochemically relatively uniform. Rare-earth differences between the basalts can be interpreted in terms of variations in the degree and depth of partial melting causing HREE (+Y) retention in the source, although there may be some inter-site differences with respect to REE. A similar picture is presented at 45°N. Apparently a range of tholeiitic, transitional, and alkalic basalts were being erupted 10 m.y. ago, which have almost identical geochemical characteristics to those recently erupted in the median valley at 45°N. Incompatible element ratios are markedly different from those recorded at the Reykjanes Ridge. Basalts recovered from the FAMOUS sites are geochemically similar to previous samples recovered from the FAMOUS area, and their incompatible element ratios are similar, but not identical, to those at 45°N. However, total trace element levels are consistently lower than in 45°N basalts, which might imply smaller degrees of partial melting and/or greater depths of magma generation at 45°N, or higher trace element levels in the mantle source at 45°N. Few of the basalts recovered on Leg 49 have the geochemical characteristics of typical "MORB" (e.g., Nazca Plate, Leg 34). The data strongly support models invoking geochemical inhomogeneity in the source regions of basalts produced at the Mid-Atlantic Ridge. However, the data also introduce an additional time factor into such models and demonstrate the uniformity of the mantle source at a particular ridge sector (over periods in excess of 30 m.y.), while emphasizing the marked differences along the ridge. Mixing models invoking "depleted" and "enriched" mantle sources would seem to be inadequate to account for the observed variations.
Resumo:
A detailed rock magnetic investigation has been carried out on Deep Sea Drilling Project (DSDP) pelagic sediments from the Central Equatorial Pacific. This comprises hysteresis and thermomagnetic measurements, Lowrie-Fuller test and, for the first time, ferromagnetic resonance (FMR). Nearly stochiometric magnetite in two grain size fractions, single domain (SD) and multi domain (MD), has been deduced to be the carrier of magnetic remanence. Comparatively strong paramagnetic contributions are carried by pyrite, being identified by X-ray analysis. The statistical analysis of paleomagnetic parameters (NRM, MDF, initial susceptibility, Königsberger ratio Q) from a large number (> 1000) of samples, supported by hysteresis measurements, indicates a latitude and sedimentation rate dependent ratio of SD/MD grains. Possible sources for the magnetic constituents are discussed in terms of bacterial, volcanic, meteoritic and authigenic origin.
Resumo:
Three Leg 84 sites provided a good record of explosive volcanism onshore (in Central America). Ash layers and many ashy pods are interbedded in Recent to Oligocene strata. Evidence of the main periods of activity was noted in Recent to upper Pleistocene, Pliocene-Pleistocene, lower Pliocene to upper Miocene, lower Miocene, and upper Oligocene. Noticeable traces of older volcanism were found in upper Eocene strata. The chemical analyses of glass shards show a dacitic to rhyolitic composition with a low to moderate calc-alkalinity. A preliminary distinction of samples in three geochemical groups according to their K2O/SiO2 contents is done to test a magmatic evolution. Comparisons are made with Leg 67 and on-land data.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.