704 resultados para Learning support class
Resumo:
Full paper presented at EC-TEL 2016
Resumo:
O presente relatório de estágio é uma análise reflexiva do processo de estágio pedagógico, inserido no Mestrado de Ensino de Educação Física dos Ensinos Básico e Secundário, pertencente à Faculdade de Motricidade Humana. Este estágio decorre na Escola Secundária Braamcamp Freire (ESBF), tendo como linhas orientadoras o Guia de Estágio Pedagógico de 2015/2016. Este explica as competências a adquirir ao longo do processo nas quatro áreas de intervenção. Na área 1 – Organização e Gestão do Ensino e Aprendizagem, Relação entre Planeamento, Condução e Avaliação. Na área 2 – Inovação e Investigação Pedagógica, está a ser desenvolvido um projeto de formação de professores relacionado com os critérios de avaliação utilizados na Área das Atividades Físicas, e a validade e fiabilidade da observação entre professores. Na área 3 – Participação na Escola, colaboração com o Núcleo de Voleibol que apesar de ser feminino e masculino em simultâneo, o meu foco será no núcleo masculino, e ainda na organização e colaboração de todas as atividades desenvolvidas pelos professores da Área Disciplinar de Educação Física. Na área 4 – Relação com a comunidade, trabalho conjunto com a Diretora de Turma no que diz respeito a todas as tarefas inerentes à função e ainda na coadjuvação e planeamento da disciplina de Cidadania. Em cada uma das áreas será feita uma descrição e reflexão sobre as minhas ações e práticas, as dificuldades com que me deparei e as soluções encontradas para ultrapassar os obstáculos que foram surgindo. No final, realizarei um balanço reflexivo sobre todo o meu processo de estágio referindo o contributo do mesmo para a minha formação e quais as bases criadas para o contínuo desenvolvimento que pretendo levar a cabo no futuro.
Resumo:
Esta investigação visa averiguar quais as práticas educativas dos pais para apoiar a aprendizagem dos seus filhos. A investigação é enquadrada pelo marco sociocognitivo da auto-regulação da aprendizagem (Bandura, 1997; Rosário, 2004; Schunk, 2001; Zimmerman, 2000). A amostra foi constituída por 30 encarregados de educação com filhos a frequentar o 4°ano de escolaridade do ensino básico, numa escola pública localizada no distrito de Lisboa. Os dados foram obtidos através de questionários de resposta aberta, tendo sido utilizados procedimentos qualitativos e quantitativos na sua análise e tratamento. Os resultados revelam que os pais consideram maioritariamente que aprender e estudar são algo que se diferencia. Os factores determinantes sobre quem dá suporte e apoio ao aprender da criança prendem-se sobretudo com a disponibilidade e com o conhecimento por parte do progenitor em causa. Os pais criam condições físicas e ambientais para o apoio ao estudo o qual é sobretudo feito através da realização dos TPC e acreditam que o apoio por si prestado é vantajoso. As estratégias mais utilizadas pelos pais são as de ensaio e monitorização. /ABSTRACT: This investigation's purpose is to inquire what strategies are being used by parents in learning support. The investigation is of quality kind, and it's based on the sociocognitive theory (Bandura, 1997; Rosário, 2004; Schunk, 2001; Zimmerman, 2000) of self-regulated learning. ln this study participated 30 parents whose children are forth grade students, in a public school located in the district of Lisbon. Ali the data was obtained through an openanswer questionnaire and qualitative and quantitative procedures were used in its study and analysis. The results attained reveal that parents consider studying to be something different from learning. The determinant factors on who provides children's learning support are mostly related with the availability and the knowledge of the ancestor in cause. Parents create physical and ambient conditions for study support which over all is made through the accomplishment of homework and believe that the support given from themselves has advantageous. The strategies most commonly used by parents are of rehearsal and monitoring.
Resumo:
In 2002, an integrated basic science course was introduced into the Bachelor of Dental Sciences programme at the University of Queensland, Australia. Learning activities for the Metabolism and Nutrition unit within this integrated course included lectures, problem-based learning tutorials, computer-based self-directed learning exercises and practicals. To support student learning and assist students to develop the skills necessary to become lifelong learners, an extensive bank of formative assessment questions was set up using the commercially available package, WebCT®. Questions included short-answer, multiple-choice and extended matching questions. As significant staff time was involved in setting up the question database, the extent to which students used the formative assessment and their perceptions of its usefulness to their learning were evaluated to determine whether formative assessment should be extended to other units within the course. More than 90% of the class completed formative assessment tasks associated with learning activities scheduled in the first two weeks of the block, but this declined to less than 50% by the fourth and final week of the block. Patterns of usage of the formative assessment were also compared in students who scored in the top 10% for all assessment for the semester with those who scored in the lowest 10%. High-performing students accessed the Web-based formative assessment about twice as often as those who scored in the lowest band. However, marks for the formative assessment tests did not differ significantly between the two groups. In a questionnaire that was administered at the completion of the block, students rated the formative assessment highly, with 80% regarding it as being helpful for their learning. In conclusion, although substantial staff time was required to set up the question database, this appeared to be justified by the positive responses of the students.
Resumo:
This study explored the influence of an experiential, in-class approach to the hospitality curriculum as a means of increasing its efficiency and effectiveness. Specifically, the study provides an example of how hospitality faculty might utilize an experiential, in-class approach to integrate additional hospitality-specific content along with process and content issues for working in teams and team decision-making. The results of this study support the efficient and effective use of an experiential inclass teaching method. The value of this study is twofold: (1) it provides an initial test of this approach’s usefulness and (2) it provides a forum for continued conversations of how experiential approaches can be utilized to enhance and reinforce other hospitality content and managerial skills and to bridge the gap between vocational and liberal education outcomes.
Resumo:
The application of functional magnetic resonance imaging (fMRI) in neuroscience studies has increased enormously in the last decade. Although primarily used to map brain regions activated by specific stimuli, many studies have shown that fMRI can also be useful in identifying interactions between brain regions (functional and effective connectivity). Despite the widespread use of fMRI as a research tool, clinical applications of brain connectivity as studied by fMRI are not well established. One possible explanation is the lack of normal pattern, and intersubject variability-two variables that are still largely uncharacterized in most patient populations of interest. In the current study, we combine the identification of functional connectivity networks extracted by using Spearman partial correlation with the use of a one-class support vector machine in order construct a normative database. An application of this approach is illustrated using an fMRI dataset of 43 healthy Subjects performing a visual working memory task. In addition, the relationships between the results obtained and behavioral data are explored. Hum Brain Mapp 30:1068-1076, 2009. (C) 2008 Wiley-Liss. Inc.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.
Resumo:
The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.