82 resultados para Leadfree Soldering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El gran esfuerzo realizado durante la última década con el fin de integrar los diferentes materiales superconductores en el campo de los sistemas eléctricos y en otras aplicaciones tecnológicas ha dado lugar a un campo de investigación amplio y prometedor. El comportamiento eléctrico de los Superconductores de Alta Temperatura (SAT) crítica (masivo y cintas) depende de diferentes parámetros desde su fabricación hasta la aplicación final con imanes o cables. Sin embargo, las aplicaciones prácticas de estos materiales están fuertemente vinculadas con su comportamiento mecánico tanto a temperatura ambiente (manipulación durante fabricación o instalación) como a temperaturas criogénicas (condiciones de servicio). En esta tesis se ha estudiado el comportamiento mecánico de materiales masivos y cintas de alta temperatura crítica a 300 y 77 K (utilizando nitrógeno líquido). Se han obtenido la resistencia en flexión, la tenacidad de fractura y la resistencia a tracción a la temperatura de servicio y a 300 K. Adicionalmente, se ha medido la dureza mediante el ensayo Vickers y nanoindentación. El módulo Young se midió mediante tres métodos diferentes: 1) nanoindentación, 2) ensayos de flexión en tres puntos y 3) resonancia vibracional mediante grindosonic. Para cada condición de ensayo, se han analizado detalladamente las superficies de fractura y los micromecanismos de fallo. Las propiedades mecánicas de los materiales se han comparado con el fin de entender la influencia de las técnicas de procesado y de las características microestructurales de los monocristales en su comportamiento mecánico. Se ha estudiado el comportamiento electromecánico de cintas comerciales superconductoras de YBCO mediante ensayos de tracción y fatiga a 77 y 300 K. El campo completo de deformaciones en la superficie del material se ha obtenido utilizando Correlación Digital de Imágenes (DIC, por sus siglas en inglés) a 300 K. Además, se realizaron ensayos de fragmentación in situ dentro de un microscopio electrónico con el fin de estudiar la fractura de la capa superconductora y determinar la resistencia a cortante de la intercara entre el substrato y la capa cerámica. Se ha conseguido ver el proceso de la fragmentación aplicando tensión axial y finalmente, se han implementado simulaciones mediante elementos finitos para reproducir la delaminación y el fenómeno de la fragmentación. Por último, se han preparado uniones soldadas entre las capas de cobre de dos cintas superconductoras. Se ha medido la resistencia eléctrica de las uniones con el fin de evaluar el metal de soldadura y el proceso. Asimismo, se ha llevado a cabo la caracterización mecánica de las uniones mediante ensayos "single lap shear" a 300 y 77 K. El efecto del campo magnético se ha estudiado aplicando campo externo hasta 1 T perpendicular o paralelo a la cinta-unión a la temperatura de servicio (77 K). Finalmente, la distribución de tensiones en cada una de las capas de la cinta se estudió mediante simulaciones de elementos finitos, teniendo en cuenta las capas de la cinta mecánicamente más representativas (Cu-Hastelloy-Cu) que influyen en su comportamiento mecánico. The strong effort that has been made in the last years to integrate the different superconducting materials in the field of electrical power systems and other technological applications led to a wide and promising research field. The electrical behavior of High Temperature Superconducting (HTS) materials (bulk and coated conductors) depends on different parameters since their processing until their final application as magnets or cables. However, practical applications of such materials are strongly related with their mechanical performance at room temperature (handling) as well as at cryogenic temperatures (service conditions). In this thesis, the mechanical behavior of HTS bulk and coated conductors was investigated at 300 and 77 K (by immersion in liquid nitrogen). The flexural strength, the fracture toughness and the tensile strength were obtained at service temperature as well as at 300 K. Furthermore, their hardness was determined by Vickers measurements and nanoindentation and the Young's modulus was measured by three different techniques: 1) nanoindentation, 2) three-point bending tests and 3) vibrational resonance with a grindosonic device. The fracture and deformation micromechanics have been also carefully analyzed for each testing condition. The comparison between the studied materials has been performed in order to understand the influence of the main sintering methods and the microstructural characteristics of the single grains on the macroscopic mechanical behavior. The electromechanical behavior of commercial YBCO coated conductors was studied. The mechanical behavior of the tapes was studied under tensile and fatigue tests at 77 and 300 K. The complete strain field on the surface of the sample was obtained by applying Digital Image Correlation (DIC) at 300 K. Addionally, in situ fragmentation tests inside a Scanning Electron Microscope (SEM) were carried out in order to study the fragmentation of the superconducting layer and determine the interfacial shear strength between substrate and ceramic layer. The fragmentation process upon loading of the YBCO layer has been observed and finally, Finite Element Simulations were employed to reproduce delamination and fragmentation phenomena. Finally, joints between the stabilizing Cu sides of two coated conductors have been prepared. The electrical resistivity of the joints was measured for the purpose of qualifying the soldering material and evaluating the soldering process. Additionally, mechanical characterization under single lap shear tests at 300 and 77 K has been carried out. The effect of the applied magnetic field has been studied by applying external magnetic field up to 1 T perpendicular and parallel to the tape-joint at service temperature (77 K). Finally, finite element simulations were employed to study the distribution of the stresses in earch layer, taking into account the three mechanically relevant layers of the coated conductor (Cu-Hastelloy-Cu) that affect its mechanical behavior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Credit is largely due to Frank D. Graham ... for the authorship of the Guides, and for the original sketches illustrating electrical principles and construction."--Pref. to no. 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallics between the die and the cast alloy. It is generally believed that close to 1% Fe is necessary in the aluminium alloy to reduce soldering. However, the role of iron in the interfacial reaction has not been studied in detail. In this investigation, reaction couples were formed between H13 tool steel substrates and an Al-11Si-2.5Cu melt containing either 0.15 or 0.60% Fe. Examination revealed distinctly different intermetallic layer morphology. The overall growth and chemistry of the reaction layer and the reaction rate measured by the consumption of the substrate were compared for the two alloy melts. It was demonstrated that a higher iron content reduces the rate of interfacial reaction, consistent with an observed thicker compact ( solid) intermetallic layer. Hence, the difference in reaction rate can be explained by a significant reduction in the diffusion flux due to a thicker compact layer. Finally, the mechanism of the growth of a thicker compact layer in the higher iron melt is proposed, based on the phase relations and diffusion both within and near the interfacial reaction zone. (C) 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of trace level Ni additions on the eutectic solidification mode of Sn-0.7Cu has been studied using continuous torque experiments during solidification. The solid fraction at which resistance to paddle rotation at the thermal centre of the sample occurs is related to the spatial distribution of solid during solidification. The results indicate that a transition in solidification mode occurs in the range 0-300 ppm Ni. Growth occurs antiparallel to heat flow from near the mould walls in the Ni-free alloy, while equiaxed growth from distributed centres dominates in alloys containing at least 300 ppm Ni. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The year so far has been a slow start for many businesses, but at least we have not seen the collapse of as many businesses that we were seeing around two years ago. We are, however, still well and truly in the midst of a global recession. Interest rates are still at an all time low, UK house prices seem to be showing little signs of increase (except in London where everyone still seems to want to live!) and for the ardent shopper there are bargains to be had everywhere. It seems strange that prices on the high street do not seem to have increased in over ten years. Mobile phones, DVD players even furniture seems to be cheaper than they used to be. Whist much of this is down to cheaper manufacturing and the rest could probably be explained by competition within the market place. Does this mean that quality suffered too? Now that we live in a world when if a television is not working it is thrown away and replaced. There was a time when you would take it to some odd looking man that your father would know who could fix it for you. (I remember our local television fix-it man, with his thick rimmed bifocal spectacles and a poor comb-over; he had cardboard boxes full of resistors and electrical wires on the floor of his front room that smelt of soldering irons!) Is this consumerism at an extreme or has this move to disposability made us a better society? Before you think these are just ramblings there is a point to this. According to latest global figures of contact lens sales the vast majority of contact lenses fitted around the world are daily, fortnightly or monthly disposable hydrogel lenses. Certainly in the UK over 90% of lenses are disposable (with daily disposables being the most popular, having a market share of over 50%). This begs the question – is this a good thing? Maybe more importantly, do our patients benefit? I think it is worth reminding ourselves why we went down the disposability route with contact lenses in the first place, and unlike electrical goods it was not just so we did not have to take them for repair! There are the obvious advantages of overcoming problems of breakage and tearing of lenses and the lens deterioration with age. The lenses are less likely to be contaminated and the disinfection is either easier or not required at all (in the case of daily disposable lenses). Probably the landmark paper in the field was the work more commonly known as the ‘Gothenburg Study’. The paper, entitled ‘Strategies for minimizing the Ocular Effects of Extended Contact Lens Wear’ published in the American Journal of Optometry in 1987 (volume 64, pages 781-789) by Holden, B.A., Swarbrick, H.A., Sweeney, D.F., Ho, A., Efron, N., Vannas, A., Nilsson, K.T. They suggested that contact lens induced ocular effects were minimised by: •More frequently removed contact lenses •More regularly replaced contact lenses •A lens that was more mobile on the eye (to allow better removal of debris) •Better flow of oxygen through the lens All of these issues seem to be solved with disposability, except the oxygen issue which has been solved with the advent of silicone hydrogel materials. Newer issues have arisen and most can be solved in practice by the eye care practitioner. The emphasis now seems to be on making lenses more comfortable. The problems of contact lens related dry eyes symptoms seem to be ever present and maybe this would explain why in the UK we have a pretty constant contact lens wearing population of just over three million but every year we have over a million dropouts! That means we must be attracting a million new wearers every year (well done to the marketing departments!) but we are also losing a million wearers every year. We certainly are not losing them all to the refractive surgery clinics. We know that almost anyone can now wear a contact lens and we know that some lenses will solve problems of sharper vision, some will aid comfort, and some will be useful for patients with dry eyes. So if we still have so many dropouts then we must be doing something wrong! I think the take home message has to be ‘must try harder’! I must end with an apology for two errors in my editorial of issue 1 earlier this year. Firstly there was a typo in the first sentence; I meant to state that it was 40 years not 30 years since the first commercial soft lens was available in the UK. The second error was one that I was unaware of until colleagues Geoff Wilson (Birmingham, UK) and Tim Bowden (London, UK) wrote to me to explain that soft lenses were actually available in the UK before 1971 (please see their ‘Letters to the Editor’ in this issue). I am grateful to both of them for correcting the mistake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.