999 resultados para Late nitrogen fertilization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of silicon application adjusted with nitrogen fertilization via top-dressing on grain productivity, the silicon contents of the soil, in the plant tissue and nitrogen contents in dry and irrigated conditions. The experimental outlining was from designed blocks with subdivided parcels and four repetitions. The treatments consisted of culture system (dry and irrigated) and the under parcels by the combination of silicon (0 and 100 kg ha(-1)), in magnesium and calcium silicate form (with 23% of SiO2), and four doses of N (urea) via top-dressing (0, 30, 60 and 90 kg ha(-1)). Silicon application at sowing furrow was a viable technique because it provided significant increase in the content of this element in the root growth of rice. The application of silicon in the sowing furrow did not change the content of the element nor the nitrogen nutrition in rice plants. The nitrogen application reduced the silicon content and increased nitrogen nutrition in rice plants. Silicon application at sowing furrow provided no increase in rice grain yield. When there was no water limitation to nitrogen fertilization enhanced linearly on rice grain yield, whereas under water stress the effect of nitrogen fertilization was limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biological nitrogen fixation (BNF) constitutes a valuable source of this nutrient for the common bean Phaseolus vulgaris L and cowpea Vigna unguiculata (L.) Walp., being its avaibility affected by mineral N in the soil solution. The objectives of this work were to evaluate the effects of nitrogen rate, as urea, on symbiotic fixation of N(2) in common bean and cowpea plants, using the isotopic technique, and quantifying the relative contributions of N sources symbiotic N(2) fixation, soil native nitrogen and urea N on the growth of the common bean and cowpea. Non nodulating soybean plants were used as standard. The research was carried out in greenhouse, using pots with 5 kg of soil from a Typic Haplustox (Dystrophic Red Yellow Latosol). The experimental design was completely randomized blocks, with 30 treatments and three replications, arranged in 5x3x2 factorial outline. The treatments consisted of five N rates: 2, 15, 30, 45 and 60 mg N kg(-1) soil; three sampling times: 23, 40 and 76 days after sowing (DAS) and two crops: common bean and cowpea. The BNF decreased with increase N rates, varying from 81.5% to 55.6% for cowpea, and from 71.9% to 55.1% for common bean. The symbiotic N(2) fixation in cowpea can substitute totally the nitrogen fertilization. The nitrogen absorption from soil is not affected by nitrogen fertilizer rate. The N recovery from fertilizer at 76 DAS was of 60.7% by common bean, and 57.1% by cowpea. The symbiotic association in common bean needs the application of a starting dose (40 kg N ha(-1)) for economically acceptable yields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACTIn no-tillage systems, straw coverage on soil surface is the key to success, and the choice of crops for rotation is crucial to achieve the sustainability and quality that conservation agriculture requires. The objective of this study was to evaluate the agronomic performance of the common bean cultivar IAC Formoso sown in succession to three straw mulch systems (corn alone, corn/Urochloa ruziziensisintercrop and U. ruziziensisalone) and topdress nitrogen rates (0; 40; 80; 120 and 160 kg ha-1N), at the four-leaf stage, three years after the implementation of no-tillage. The experiment was arranged in a randomized block split plot design, with three replications. Common bean highest yields were achieved in succession to U. ruziziensisalone and intercropped with corn. The corn/U. ruziziensisintercrop provided both straw and seed production, allowing for quality no-tillage. Topdressed nitrogen influenced the common bean yield when in succession to corn alone, U. ruziziensisalone and corn/U. ruziziensisintercrop in no-tillage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The great difficulty of incorporation of N fertilizers into the "green sugarcane" system causes concern and since urea is the most commonly used source, there is the risk of loosing NH3 through volatilization. For this reason, a field experiment was undertaken (in a Hapludox Typic) with the objective of evaluating the agronomic efficiency of ammonium chloride on stubble of the second ratoon (SP89 1115), as well as its residual effect on the subsequent cycle (third ratoon). The experimental design was randomized blocks with four replications. Treatments consisted of three N rates (60, 120 and 180 kg ha-1 N) in the form of NH4Cl, in addition to a control treatment without the addition of N fertilizer. The ratoon cane of the second cutting was harvested in November 2006 and the treatments were applied in December 2006. The second ratoon was harvested mechanically in November 2007 and in December 2007, 450 kg ha-1 of the NPK mixture 20-05-19 was applied, providing 90, 22 and 86 kg ha-1 N, P2O5 and K2O, respectively, for the purpose of evaluating the effect of residual-N from the treatments implanted in December 2006. An increase in the rates of N-NH4Cl had a positive effect on the leaf concentrations of P, Mg and S. Stalk yield (MSS - Mg ha-1 of sugarcane stalks) and sugar (MSH - Mg ha-1 of sucrose) in the November 2006 harvest responded linearly to the increase of N doses in the form of NH4Cl. In relation to the effect of residual-N in the 2007/2008 harvest, it was observed, in general, that the concentrations of macronutrients in the sugarcane leaf +1 were within the range considered adequate in the state of São Paulo, Brazil. The residual-N of the NH4Cl doses resulted in a significant reduction in stalk (MSS) and sugar (MSH) production. It may be concluded that the NH4Cl source at a dose of 120 kg ha-1 N in ratoon fertilization of the second cutting was agronomically efficient, presenting, however, less efficiency of residual-N in the subsequent cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol). The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing). Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1) sidedressed as urea (rates split in four applications at harvests in winter/spring), as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping). Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crop residues on the soil surface of no-till systems can intensify ammonia volatilization from N fertilizers applied to cereal crops. This study assessed the magnitude of N losses through ammonia volatilization from urea applied to no-till winter (wheat) and summer crops (maize) on a Typic Hapludox in the south-central region of Paraná, southern Brazil. In addition, the potential of alternative N sources (urea with urease inhibitor, liquid fertilizer, ammonium nitrate and ammonium sulfate) and different urea managements (fertilizer applied in the morning or afternoon) were evaluated. Two experiments with maize and wheat were carried out for two years, arranged in a randomized block design with four replications. Nitrogen volatilization losses were assessed with a semi-open static collector until 21 days after fertilization. In winter, the losses were low (<5.5 % of applied N) for all N sources, which were not distinguishable, due to the low temperatures. In the summer, volatilization rates from urea were higher than in the winter, but did not exceed 15 % of applied N. The main factor decreasing N losses in the summer was the occurrence of rainfall in the first five days after fertilization. Urea with urease inhibitor, nitrate and ammonium sulfate were efficient to decrease ammonia volatilization in maize, whereas the application time (morning or afternoon) had no influence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The productivity and the translocation of assimilates and nitrogen (N) were compared after inoculation of wheat (Triticum aestivum L., cv. BR-23) seeds with two strains of Azospirillum brasilense (strains 245 and JA 04) under field conditions. The inoculation of wheat seeds was done with a peat inoculant at sowing time. Plant material for evaluations were collected at anthesis and maturity. No differences in grain yield and in the translocation of assimilates resulting from inoculation were detected. Differences were observed in relation to N rates (0, 15, and 60 kg ha-1). N content in the grain increased significantly in the bacteria-inoculated treatments in which N was not added. This increase in N content in the grain with inoculation was probably due to higher N uptake after anthesis without any significant contribution on the grain yield. Such increment was of 8.4 kg ha-1 of N representing 66% more N than in no inoculated treatment. Regardless of the inoculation and the rate of N applied, it was observed that about 70% of the N accumulated at anthesis was translocated from vegetative parts to the grain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract:The objective of this work was to evaluate whether a canopy sensor is capable of estimating sugarcane response to N, as well as to propose strategies for handling the data generated by this device during the decision-making process for crop N fertilization. Four N rate-response experiments were carried out, with N rates varying from 0 to 240 kg ha-1. Two evaluations with the canopy sensor were performed when the plants reached average stalk height of 0.3 and 0.5 m. Only two experiments showed stalk yield response to N rates. The canopy sensor was able to identify the crop response to different N rates and the relationship of the nutrient with sugarcane yield. The response index values obtained from the canopy sensor readings were useful in assessing sugarcane response to the applied N rate. Canopy reflectance sensors can help to identify areas responsive to N fertilization and, therefore, improve sugarcane fertilizer management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to evaluate the productive performance of sunflower plants irrigated with different levels of domestic treated sewage and groundwater well with different doses of nitrogen. It was used randomized blocks design in split-split plots with four replications. In the plots, we evaluated the effect of two types of irrigation water, in the subplots we evaluated the five irrigation levels expressed as 25, 50, 75, 100 and 125% of the Class A pan Evaporation (CAE), and in the sub subplots, we evaluated the effect of four different doses of nitrogen (25, 50, 75 and 100 kg ha-1). The irrigation of sunflower with domestic sewage produced greater yield potential of grain and oil. The use of water from treated wastewater can replace up to 50 kg N ha-1 without affecting productivity. It is recommended for the commercial production of sunflower the use of treated sewage water with irrigation depth relative to 100% of CAE (296.64 mm) and nitrogen of 25 kg ha-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well known that the parasitic weed Striga asiatica (L.) Kuntze can be suppressed by Striga-tolerant sorghum (Sorghum bicolor L. Moench) cultivars, Desmodium intortum (Mill.) Urb. (greanleaf desmodium), and by fertilization with nitrogen. The study objective was the assessment of Striga control provided by integration of Desmodium density, timing of sorghum-Desmodium intercrop establishment, and nitrogen fertilization. Growth responses and yield of three sorghum cultivars were measured in three pot experiments. A soil naturally infested with Striga was used, and that part of the soil which served as uninfested control was chemically sterilised. Striga numbers and growth were affected significantly by sorghum cultivars, sorghum-Desmodium intercrop ratios, timing of the sorghum-Desmodium association, as well as by their interactions. Desmodium caused 100% suppression of Striga emergence when Desmodium was established in the 1:3 sorghum-Desmodium ratio at seeding of sorghum. Total control of Striga was also achieved with the 1:1 sorghum-Desmodium ratio when Desmodium was transplanted 30 days before sorghum seeding. However, these two treatments also caused significant reductions in sorghum yield. In contrast, 100% Striga control and a dramatic increase in sorghum yield were achieved with 100 kg N ha^{-1} in the 1:1 sorghum-Desmodium intercrop. Compatibility of sorghum and Desmodium was evident at the 1:1 sorghum-Desmodium intercrop established at sorghum seeding. Overall, the Ethiopian cultivars Meko and Abshir showed better agronomic performance and higher tolerance to Striga than the South African cultivar PAN 8564. It is recommended that the N × Desmodium × sorghum interaction be investigated under field conditions.