962 resultados para Laser Propagation
Resumo:
The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.
Resumo:
We investigate the evolution of filamentation in air by using a longitudinal diffraction method and a plasma fluorescence imaging technique. The diameter of a single filament in which the intensity is clamped increases as the energy of the pump light pulse increases, until multiple filaments appear. (c) 2006 Optical Society of America.
Resumo:
An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.
Resumo:
To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.
Resumo:
The propagation of an arbitrary polarized few-cycle ultrashort laser pulse in a degenerate three-level medium is investigated by using an iterative predictor-corrector finite-difference time-domain method. It is found that the polarization evolution of the ultrashort laser pulse is dependent not only on the initial atomic coherence of the medium but also on the polarization condition of the incident laser pulse. When the initial effective area is equal to 2 pi, complete linear-to-circular and circular-to-linear polarization conversion of few-cycle ultrashort laser pulses can be achieved due to the quantum interference effects between the two different transition paths.
Resumo:
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.
Resumo:
The effects of the relative phase between two laser beams on the propagation of a weak electromagnetic pulse are investigated in a V-type system with spontaneously generated coherence (SGC). Due to the relative phase, the subluminal and superluminal group velocity can be unified. Meanwhile, SGC can be regarded as a knob to manipulate light propagation between subluminal and superluminal.
Resumo:
In this paper we describe an experiment on laser cooling of Rb-87 atoms directly from a vapor background in diffuse light. Diffuse light is produced in a ceramic integrating sphere by multiple scattering of two laser beams injected through multimode fibers. A probe beam, whose propagation direction is either horizontal or vertical, is used to detect cold atoms. We measured the absorption spectra of the cold atoms by scanning the frequency of the probe beam, and observed both the absorption signal and the time of flight signal after we switched off the cooling light, from which we estimated the temperature and the number of cold atoms. This method is clearly attractive for building a compact cold atom clock.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
We present what we believe is a novel technique based on the moire effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moire pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M-2 and the effective radius of curvature R-e from the moire pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation. (C) 1999 Optical Society of America [S0740-3232(99)01502-1].
Resumo:
The propagation expression of a broadband laser passing through a dispersive wedge is derived on the basis of the Huygens-Fresnel diffraction integral, Smoothing effects caused by the phase perturbation of the dispersive wedge on the intensity profiles are investigated in detail. The phase perturbation of the dispersive wedge induces a relative transverse position shift between the diffraction patterns of different frequency components. The relative transverse position shift is of great benefit to the fill of the intensity peaks of some patterns in the valleys of others when these patterns are overlapped and thus the smoothing effect is achieved. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A closed-form propagation equation of Hermite-cosh-Gaussian beams passing through an unapertured thin lens is derived. Focal shifts are analyzed by means of two different methods according to the facts that the axial intensity of some focused Hermite-cosh-Gaussian beams are null and that of some others are not null but the principal maximum intensity may be located on the axis or off the axis. Optimal focusing for the beams is studied, and the condition of optimal focusing ensuring the smallest beam width is also given. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Starting from the Huygens-Fresnel diffraction integral, the propagation equations of a broadband laser passing through a dispersive lens and a dispersive wedge are derived. Smoothing effect on the side lobes of the focused pattern is achieved as the broadband laser passes through the lens because of the spectral dispersion of the lens. By inserting a dispersive wedge behind the lens, better smoothing effect is realized because a relative position shift between focused patterns of different frequency components is generated due to the spectral dispersion of the wedge. Smoothing effect on the side lobe is obtained even with small bandwidth of the broadband laser as the wedge is used. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M-2 is analyzed. An equivalent factor M-F(2) for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M-2/M-F(2) by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M-2 to M-F(2) but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M-2. (C) 2007 Elsevier B.V. All rights reserved.