862 resultados para Large power system
Resumo:
In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.
Resumo:
The usual practice to study a large power system is through digital computer simulation. However, the impact of large scale use of small distributed generators on a power network cannot be evaluated strictly by simulation since many of these components cannot be accurately modelled. Moreover, the network complexity makes the task of practical testing on a physical network nearly impossible. This study discusses the paradigm of interfacing a real-time simulation of a power system to real-life hardware devices. This type of splitting a network into two parts and running a real-time simulation with a physical system in parallel is usually termed as power-hardware-in-the-loop (PHIL) simulation. The hardware part is driven by a voltage source converter that amplifies the signals of the simulator. In this paper, the effects of suitable control strategy on the performance of PHIL and the associated stability aspects are analysed in detail. The analyses are validated through several experimental tests using an real-time digital simulator.
Resumo:
This thesis was a step forward in developing probabilistic assessment of power system response to faults subject to intermittent generation by renewable energy. It has investigated the wind power fluctuation effect on power system stability, and the developed fast estimation process has demonstrated the feasibility for real-time implementation. A better balance between power network security and efficiency can be achieved based on this research outcome.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.
Resumo:
This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.
Resumo:
In this paper a modified Heffron-Phillip's (K-constant) model is derived for the design of power system stabilizers. A knowledge of external system parameters, such as equivalent infinite bus voltage and external impedances or their equivalent estimated values is required for designing a conventional power system stabilizer. In the proposed method, information available at the secondary bus of the step-up transformer is used to set up a modified Heffron-Phillip's (ModHP) model. The PSS design based on this model utilizes signals available within the generating station. The efficacy of the proposed design technique and the performance of the stabilizer has been evaluated over a range of operating and system conditions. The simulation results have shown that the performance of the proposed stabilizer is comparable to that could be obtained by conventional design but without the need for the estimation and computation of external system parameters. The proposed design is thus well suited for practical applications to power system stabilization, including possibly the multi-machine applications where accurate system information is not readily available.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.