932 resultados para Lambertian surfaces
Resumo:
A largely overlooked aspect of creative design practices is how physical space in design studios plays a role in supporting designers' everyday work. In particular, studio surfaces such as designers' desks, office walls, notice boards, clipboards and drawing boards are full of informative, inspirational and creative artefacts such as, sketches, drawings, posters, story-boards and Post-it notes. Studio surfaces are not just the carriers of information but importantly they are sites of methodic design practices, i.e. they indicate, to an extent, how design is being carried out. This article describes the results of an ethnographic study on the use of workplace surfaces in design studios, from two academic design departments. Using the field study results, the article introduces an idea of ‘artful surfaces’. Artful surfaces emphasise how artfully designers integrate these surfaces into their everyday work and how the organisation of these surfaces comes about helping designers in accomplishing their creative and innovative design practices. Using examples from the field study, the article shows that artful surfaces have both functional and inspirational characteristics. From the field study, three types of artful surfaces are identified: personal; shared; and project-specific. The article suggests that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers' everyday work.
Resumo:
A largely overlooked aspect of innovative design practices is how workplace surfaces play a role in supporting designers' everyday work. In this paper we introduce the idea of artful surfaces. Artful surfaces (Figure 1) are full of informative, inspirational and creative artefacts that help designers accomplish their everyday design practices. The way these surfaces are created and used could provide information about how designers work. We identify four types of artful surfaces: personal, shared, project-specific and live surfaces; and describe them using examples.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Goethite, one of the most thermodynamically stable iron oxides, has been extensively researched especially the structure (including surface structure), the adsorption capacity to anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural environment and its potential application in environmental protection. For example, the adsorption of heavy metals by goethite can decrease the concentration of heavy metals in aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the release of carbon and fix carbon. In this present overview, the possible physicochemical properties of the goethite surface contributing to the strong affinity of goethite to nutrients and contaminants in natural environment are reported. Moreover, these chemicals adsorbed by goethite were also summarized and the suggested adsorption mechanism for these adsorbates was elucidated, which will help us understand the role of goethite in natural environment and provide some information about goethite as an absorbent. In addition, the feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for removal of environmental pollution.
Resumo:
Space and spatial arrangements play an important role in our everyday social interactions. The way we use and manage our surrounding space is not coincidental, on the contrary, it reflects the way we think, plan and act. Within collaborative contexts, its ability to support social activities makes space an important component of human cognition in the post-cognitive era. As technology designers, we can learn a lot by rigorously understanding the role of space for the purpose of designing collaborative systems. In this paper, we describe an ethnographic study on the use of workplace surfaces in design studios. We introduce the idea of artful surfaces. Artful surfaces are full of informative, inspirational and creative artefacts that help designers accomplish their everyday design practices. The way these surfaces are created and used could provide information about how designers work. Using examples from our fieldwork, we show that artful surfaces have both functional and inspirational characteristics. We indentify four types of artful surfaces: personal, shared, project-specific and live surfaces. We believe that a greater insight into how these artful surfaces are created and used could lead to better design of novel display technologies to support designers’ everyday work.
Resumo:
The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.
Resumo:
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.
Resumo:
This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.
Resumo:
Microscopic surface diffusivity theory based on atomic ionization energy concept is developed to explain the variations of the atomic and displacement polarizations with respect to the surface diffusion activation energy of adatoms in the process of self-assembly of quantum dots on plasma-exposed surfaces. These polarizations are derived classically, while the atomic polarization is quantized to obtain the microscopic atomic polarizability. The surface diffusivity equation is derived as a function of the ionization energy. The results of this work can be used to fine-tune the delivery rates of different adatoms onto nanostructure growth surfaces and optimize the low-temperature plasma based nanoscale synthesis processes.
Resumo:
Selective and controlled deposition of plasma-grown nanoparticles is one of the pressing problems of plasma-aided nanofabrication. The results of advanced numerical simulations of motion of charge-variable nanoparticles in the plasma presheath and sheath areas and in localized microscopic electric fields created by surface microstructures are reported. Conditions for site-selective deposition of such nanoparticles onto individual microstructures and open surface areas within a periodic micropattern are formulated. The effects of plasma parameters, surface potential, and micropattern features on nanoparticle deposition are investigated and explained using particle charging and plasma force arguments. The results are generic and applicable to a broad range of nanoparticle-generating plasmas and practical problems ranging from management of nanoparticle contamination in microelectronics to site-selective nanoparticle deposition into specified device locations, and synthesis of advanced microporous materials and nanoparticle superlattices. © 2007 American Institute of Physics.
Resumo:
This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
The Woods Bagot 2007 refurbishment of the Qantas and British Airways Bangkok Business lounge in the Survarnabhumi Airport features wall finishes designed by wallpaper designer, Florence Broadhurst (1899-1977) and Thai Silk trader, Jim Thompson (1906-1967). This distinctive selection, which is proclaimed on the airport’s website, of patterned wall surfaces side by side draws attention to their striking similarities and their defining differences . Thompson and Broadhurst would appear to be worlds apart, but here in the airport their work brings them together. Thompson, the son of a wealthy cotton family in America, worked as an architect before joining the army. He moved to Bangkok to start The Thai Silk Company in 1948. Broadhurst was born on a farm in Mt. Perry, Queensland. She began her career as a performance artist, as part of an Australian troupe in Shanghai, moving onto pursue a career in fashion design, catering to the middle and upper classes in London. Upon her return to Australia, Broadhurst started a print design company in 1959. Both Broadhurst and Thompson pursued multiple careers, lived many lives, and died under mysterious circumstances. Broadhurst was murdered in 1977 at her Sydney print warehouse, which remains an unsolved crime. Thompson disappeared in Malaysia in 1967 and his body has never been found. This chapter investigates the parallels between Thompson and Broadhurst and what lead them to design such popular patterns for wall surfaces towards the end of their careers. While neither designer was a household name, their work is familiar to most, seen in the costume and set design of films, on the walls of restaurants and cafes and even in family homes. The reason for the popularity of their patterns has not previously been analysed. However, this chapter suggests that the patterns are intriguing because they contain something of their designers’ identities. It suggests that the coloured surface provides a way of camouflaging and hiding its subjects’ histories, such that Broadhurst and Thompson, consciously or unconsciously, used the patterned surface as a plane in which their past lives could be buried. The revealing nature of the stark white wall, compared with the forgiveness provided by the pattern in which to hide, is elaborated by painter and advocate for polychromatic architecture, Fernand Léger in his essay, “The Wall, The Architect, The Painter (1965).” Léger writes that, “the modern architect has gone too far in his magnificent attempts to cleanse through emptiness,” and that the resultant white walls of modernity create ‘an impalpability of air, of slick, brilliant new surfaces where nothing can be hidden any longer …even shadows don’t dare to enter’. To counter the exposure produced by the white wall, Thompson and Broadhurst designed patterned surfaces that could harbour their personal histories. Broadhurst and Thompson’s works share a number of commonalities in their design production, even though their work in print design commenced a decade apart. Both designers opted to work more with traditional methods of pattern making. Broadhurst used hand-operated screens, and Thompson outsourced work to local weavers and refrained from operating out of a factory. Despite humble beginnings, Broadhurst and Thompson enjoyed international success with their wall patterns being featured in a number of renowned international hotels in Bahrain, Singapore, Sydney, and London in the 1970s and 1980s. Their patterns were also transferred to fabric for soft furnishings and clothing. Thompson’s patterns were used for costumes in films including the King and I and Ben Hur. Broadhurst’s patterns were also widely used by fashion designers and artists, such as Akira Isogowa‘s costume design for Salome, a 1998 production by the Sydney Dance Company. Most recently her print designs have been used by skin illustrator Emma Hack, in a series of works painting female bodies into Broadhurst’s patterns. Hack’s works camouflage the models’ bodies into the patterned surface, assimilating subject and surface, hinting at there being something living within the patterned wall. More than four decades after Broadhurst’s murder and five decades since Thompson’s disappearance, their print designs persist as more than just a legacy. They are applied as surface finishes with the same fervour as when the designs were first released. This chapter argues that the reason for the ongoing celebration of their work is that there is the impalpable presence of the creator in the patterns. It suggests that the patterns blur the boundary between subject and surface.