947 resultados para Label-free redox capacitance biosensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A label-free electrochemical detection method for DNA hybridization based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes is reported. Synthetic single-stranded 27-mer oligonucleotides (probe) have been immobilized at 2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole film formed by electropolymerization on the previously formed polypyrrole layer. The 27- or 18-mer target oligonucleotides were monitored via the electrochemically driven anion exchange of the inner polypyrrole film. The performance of the miniaturized DNA biosensor system was studied in respect to selectivity, sensitivity, reproducibility, and regeneration of the sensor. Control experiments were performed with a noncomplementary target of 27-mer DNA and 12 base-pair mismatched 18-mer sequences, respectively, and did not show any unspecific binding. Under optimized experimental conditions, the label-free electrochemical biosensor enabled the detection limits of 0.16 and 3.5 fmol for the 18- and 2 7-mer DNA strand, respectively. Furthermore, we demonstrate reusability of the electrochemical DNA biosensor after successful recovery of up to 100% of the original signal by regenerating the DNA label-free electrode with 50 mM HCl at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-reactive protein (CRP) is an acute phase protein whose levels are increased in many disorders. Levels greater than 3 mu g/mL serum have hitherto been considered to indicate pathology, but there is increasing interest in assessments between 0.1 and 10 mu g/mL, which have been found to correlate with severity of risk for cardiovascular disease. We report herein the generation of both antibody and Affimer based impedance immunoassays for CRP that are substantially more sensitive than clinically utilized immunonephelometry and immunoturbidity assessments. Significant in this study is not only the use of a constrained peptide to detect a clinically important target but also that derived electrochemical impedance assays can be highly sensitive even with probes whose relatively weak (mu M) affinities are not amenable to target detection by surface plasmon resonance (SPR). Key to this finding is acknowledging that receptive surfaces of comparatively low initial steric bulk and charge transfer resistance are especially primed to be highly responsive to target binding in electroanalytical assays of this type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the optimisation and the analytical performances of a label-free impedimetric immunosensor for the detection of tumour marker CA125 based on gold nanoparticles modified screen-printed graphite electrode. Experimental conditions of each step for the developed immunosensor were studied and optimised. The immunosensor response varied linearly (r2 = 0.996) with antigen concentration between 0 and 100 U/mL. The estimated detection limit was 6.7 U/mL. The electrochemical immunosensor allowed unambiguous identification of CA125, while no significant non-specific signal was detected in the case of all negative controls. The analytical usefulness of the impedimetric immunosensor was finally demonstrated analysing serum samples. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the development of a sensitive label-free impedimetric biosensor based on the use of affibody as bioreceptor and gold nanostructured screen-printed graphite as a sensor platform for the detection of human epidermal growth factor receptor 2 (HER2). The affisensor is realized by immobilizing a terminal cysteine-modified affibody on gold nanoparticles. The sensor was characterized by electrochemical techniques and scanning electron microscopy (SEM). Furthermore, surface plasmon resonance (SPR) technology was also applied to explore the potential of affibodies as small-molecule discriminating tools. Using optimized experimental conditions, a single-use affisensor showed a good analytical performance for HER2 detection from 0 to 40μg/L. The estimated limit of detection was 6.0μg/L. Finally, the realized affisensor was applied to human serum samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Many flow-cytometric cell characterization methods require costly markers and colour reagents. We present here a novel device for cell discrimination based on impedance measurement of electrical cell properties in a microfluidic chip, without the need of extensive sample preparation steps and the requirement of labelling dyes. MATERIALS AND METHODS, RESULTS: We demonstrate that in-flow single cell measurements in our microchip allow for discrimination of various cell line types, such as undifferentiated mouse fibroblasts 3T3-L1 and adipocytes on the one hand, or human monocytes and in vitro differentiated dendritic cells and macrophages on the other hand. In addition, viability and apoptosis analyses were carried out successfully for Jurkat cell models. Studies on several species, including bacteria or fungi, demonstrate not only the capability to enumerate these cells, but also show that even other microbiological life cycle phases can be visualized. CONCLUSIONS: These results underline the potential of impedance spectroscopy flow cytometry as a valuable complement to other known cytometers and cell detection systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently demonstrated a biosensor based on a lattice of SU8 pillars on a 1 μm SiO2/Si wafer by measuring vertically reflectivity as a function of wavelength. The biodetection has been proven with the combination of Bovine Serum Albumin (BSA) protein and its antibody (antiBSA). A BSA layer is attached to the pillars; the biorecognition of antiBSA involves a shift in the reflectivity curve, related with the concentration of antiBSA. A detection limit in the order of 2 ng/ml is achieved for a rhombic lattice of pillars with a lattice parameter (a) of 800 nm, a height (h) of 420 nm and a diameter(d) of 200 nm. These results correlate with calculations using 3D-finite difference time domain method. A 2D simplified model is proposed, consisting of a multilayer model where the pillars are turned into a 420 nm layer with an effective refractive index obtained by using Beam Propagation Method (BPM) algorithm. Results provided by this model are in good correlation with experimental data, reaching a reduction in time from one day to 15 minutes, giving a fast but accurate tool to optimize the design and maximizing sensitivity, and allows analyzing the influence of different variables (diameter, height and lattice parameter). Sensitivity is obtained for a variety of configurations, reaching a limit of detection under 1 ng/ml. Optimum design is not only chosen because of its sensitivity but also its feasibility, both from fabrication (limited by aspect ratio and proximity of the pillars) and fluidic point of view. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of optical label free biosensors has become a topic of interest during past years, with devices based on the detection of angular or wavelength shift of optical modes [1]. Common parameters to characterize their performance are the Limit of Detection (LOD, defined as the minimum change of refractive index upon the sensing surface that the device is able to detect, and also BioLOD, which represents the minimum amount of target analyte accurately resolved by the system; with units of concentration (common un its are p pm, ng/ml, or nM). LOD gives a first value to compare different biosensors, and is obtained both theoretically (using photonic calculation tools), and experimentally,covering the sensing area with fluids of different refractive indexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication we report a direct immunoassay for detecting dengue virus by means of a label-free interferometric optical detection method. We also demonstrate how we can optimize this sensing response by adding a blocking step able to significantly enhance the optical sensing response. The blocking reagent used for this optimization is a dry milk diluted in phosphate buffered saline. The recognition curve of dengue virus over the proposed surface sensor demonstrates the capacity of this method to be applied in Point of Care technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.