898 resultados para LUNG-CANCER CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrilysin-1 (also called matrix metalloproteinase-7) is expressed in injured lung and in cancer but not in normal epithelia. Bronchiolization of the alveoli (BOA), a potential precursor of lung cancer, is a histologically distinct type of metaplasia that is composed of cells resembling airway epithelium in the alveolar compartment. We demonstrate that there is increased expression of matrilysin-1 in human lesions and BOA in the CC10-human achaete-scute homolog-1 transgenic mouse model. Forced expression of the matrilysin-1 gene in immortalized human normal airway epithelial BEAS-2B and HPLD1 cells, which do not normally express matrilysin-1, promoted cellular migration, suggesting a functional link for BOA formation via bronchiolar cell migration. In addition, matrilysin-1 stimulated proliferation and inhibited Fas-induced apoptosis, while a knockdown by RNA interference decreased cell growth, migration, and increased sensitivity to apoptosis. Western blotting demonstrated increased levels of phospho-p38 and phospho-Erk1/2 kinases after matrilysin-1 expression. Gene expression analysis uncovered several genes that were related to cell growth, migration/movement, and death, which could potentially facilitate bronchiolization. In vivo, the formation of BOA lesions was reduced when CC10-human achaete-scute homolog-1 mice were crossed with matrilysin-1 null mice and was correlated with reduced matrilysin-1 expression in BOA. We conclude that matrilysin-1 may play an important role in the bronchiolization of alveoli by promoting proliferation, migration, and attenuation of apoptosis involving multiple genes in the MAP kinase pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism. © 2012 Macmillan Publishers Limited

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: O cancro do pulmão (LC), uma das principais causas de mortalidade relacionada com cancro em Portugal, pode levar à formação de metástases hematogénicas. A adesão das células tumorais ao endotélio é considerada um dos passos fundamentais envolvidos na metástase. Em células sanguíneas, esta adesão é mediada por ligandos de E-selectina (E-SL), glicoproteínas ou glicolípidos decorados principalmente com sialyl-Lewis x (sLex) e sialyl-Lewis a (sLea). Tem sido descrito a expressão destes antigénios em LC, contudo o seu papel funcional em permitir a adesão das células de LC ao endotélio é ainda pouco compreendido. Foram analisadas amostras emparelhadas normais e tumorais de pacientes com cancro de pulmão de não-pequenas células (NSCLC) e três linhas celulares de LC. Immunoblotting assays com anti-sLex/sLea e molécula quimérica de E-selectina demonstraram que tecidos tumorais de LC sobreexpressam significativamente E-SL e resultados de citometria de fluxo demonstraram uma expressão elevada de E-SL nas linhas celulares. Para compreender o mecanismo da sobreexpressão de E-SL em tecidos tumorais e linhas celulares de LC, foi analisada a expressão de genes envolvidos na biossíntese de E-SL, nomeadamente FUT3, FUT4, FUT6, FUT7, ST3GAL3, ST3GAL4, ST3GAL6, β4GALT1, GCNT1 e GALNT3. Observou-se a sobreexpressão das fucosiltransferases FUT3, FUT6 e FUT7 em tecidos tumorais de LC e FUT3 em linhas celulares de LC, sendo que neste último, esta expressão é correlacionada com um aumento da adesão das células de LC às selectinas endoteliais. Foi observado que uma baixa expressão de FUT4 em tecidos tumorais está associada com estadios menos avançados de NSCLC. Foram analisadas ainda proteínas decoradas com sLex/sLea, tendo-se identificado como E-SL o antigénio carcinoembrionário em NSCLC. Em resumo, esta tese contribuiu para uma melhor compreensão das alterações glicosídicas e moléculas que podem influenciar a progressão tumoral do LC, podendo permitir identificar futuramente novos biomarcadores de diagnóstico/prognóstico e potenciais alvos terapêuticos para o NSCLC.--------------------------ABSTRACT: Lung cancer (LC), one of the major causes of mortality related to cancer in Portugal, may lead to hematogenous metastasis. Adhesion of cancer cells to endothelium is considered one of the crucial steps involved in metastasis. In blood cells, this adhesion is initiated by endothelial selectin ligands (E-SL) that are glycoproteins or glycolipids decorated mostly with sialyl-Lewis x (sLex) and sialyl-Lewis a (sLea). While LC has been described as expressing these sialyl Lewis antigens, its functional role in allowing LC adhesion to endothelium is still poorly understood. We analyzed paired tumor and normal tissues samples from non-small cell lung cancer (NSCLC) patients and three LC cell lines. Immunoblotting assays with anti-sLex/sLea and E-selectin chimera demonstrated that LC tumor tissues significantly overexpress E-SL and flow cytometry results indicated that E-SL are also abundantly expressed in LC cell lines. To understand the mechanism behind the overexpression of E-SL in LC tissues and cell lines, we analyzed the expression of genes involved in its biosynthesis, namely FUT3, FUT4, FUT6, FUT7, ST3GAL3, ST3GAL4, ST3GAL6, β4GALT1, GCNT1 and GALNT3. It was observed the overexpression of fucosyltransferases FUT3, FUT6 and FUT7 in LC tumor tissues and FUT3 in LC cell lines, being this last one correlated with an increased reactivity of the LC cells to endothelial selectins. It was described that low expression of FUT4 in tumor tissues is correlated with early stages of NSCLC. We also analyzed scaffolds proteins of sLex/sLea and it was identified the carcinoembryonic antigen as an E-SL in NSCLC. In summary, this thesis contributed to a better understanding of the glycosidic changes and molecules that can influence tumor progression of LC, allowing identifying in the future new diagnosis/prognosis biomarkers and potential therapeutic targets for NSCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cells are known to display increased glucose uptake and consumption. The glucose transporter (GLUT) proteins facilitate glucose uptake, however, their exact role in cancer metabolism remains unclear. The present study examined mRNA and protein expression of GLUT1, GLUT3, GLUT4 and GLUT12 in lung, breast and prostate cancer cells and corresponding noncancerous cells. Additionally, GLUT expression was determined in tumours from mice xenografted with human cancer cells. Differences in the mRNA and protein expression of GLUTs were found between cancerous and corresponding noncancerous cells. These findings demonstrate abundant expression of GLUT1 in cancer and highlight the importance of GLUT3 as it was expressed in several cancer cells and tumours. GLUT expression patterns in vitro were supported by the in vivo findings. The study of GLUT protein expression in cancer is important for understanding cancer metabolism and may lead to identification of biomarkers of cancer progression and development of target therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrière-plan: les cellules tumorales circulantes (CTC) sont détectables dans de nombreux cancers et peuvent être utiles cliniquement pour le pronostic de la maladie, pour mesurer la récidive et pour prédire la sensibilité aux medicaments chimiothérapeutiques. Au cours des dernières années, l’études des CTC dans de nombreux cancers tels que le cancer du sein, du poumon, du côlon et de la prostate a grandement évolué. Alternativement, il y peu d'études à ce sujet concernant le cancer du col de l’utérus (CCU). Objectifs: Notre objectif est d’optimiser le processus d'enrichissement des CTC dans le CCU et la détection moléculaire des biomarqueurs E6 et E7. Matériel et Méthodes: Dans l’optique de mimer la présence de CTC dans le sang, nous avons dilué des cellules cancéreuses CaSki VPH16-positif provenant d’un CCU dans du sang humain prélevé sur des volontaires sains. Les CaSki ont été collectées suite à une centrifugation par densité avec le Ficoll, la lyse des globules rouges (RBC) et la lyse des RBC combinée avec un enrichissement positif et négatif à l’aide de marqueurs de surface cellulaire. Les CTC ont été détectées par la mesure d’expression des oncogènes E6 et E7 du virus du papillome humain (VPH), de la cytokératine 19 (CK19) et de la cycline p16INK4 en utilisant la technique quantitative en temps réel de Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR). Pour valider notre méthode de détection des CTC in vivo, nous avons recruté dix patientes atteintes d’un CCU VPH16 positif et six contrôles sains. Résultats: Dans le modèle de dilutions de cellules CaSki, la lyse des RBC seule ou combinée avec l'enrichissement négatif ou positif suggèrent des limites de détection de 1 CTC par mL de sang pour tous les biomarqueurs moléculaires utilisés. La sensibilité de détection est accrue lors de l'utilisation de l’enrichissement positif et négatif en réduisant le bruit de fond causé par les monocytes sanguins. Contrairement aux oncogènes E6 et E7, les marqueurs CK19 et p16INK4A ont été détectés chez des individus sains, les niveaux d'expression de base appropriés doivent donc être déterminés avec précision par rapport aux patientes CCU. Le gradient de densité par Ficoll a une limite de détection de seulement environ 1000 cellules par mL de sang. Enfin, les CTC ont été détectées dans 2/10 patientes en utilisant le marqueur CK19. Cependant, ces patientes étaient négatives pour les oncogènes E6/E7. Le marqueur p16INK4A était exprimé au même niveau dans tous les échantillons (CCU et normaux). Conclusion: Notre étude suggère que les oncogènes E6 et E7 du VPH16 sont les marqueurs biologiques les plus sensibles et spécifiques en qRT-PCR pour détecter les CTC dans le modèle de dilution de cellules de CCU dans le sang. Chez les patientes atteintes d’un CCU de stade précoce, seulement CK19 a révélé la présence potentielle de CTC, ce qui suggère que ces cellules sont rares à ce stade de la maladie. Mots clés: cancer du col de l’utérus, cellules tumorales circulantes, RT-qPCR, E6 et E7, CK19, p16INK4A, enrichissement immunomagnétique, détection moléculaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased expression of matrix metalloproteinase-1 (MMP1) is associated with poor prognosis in cancers. Several single nucleotide polymorphisms (-1607GG > G, -839G > A, -755G > T, -519A > G, -422T > A, -340C > T, and 320C > T) in the MMP1 gene promoter have recently been identified. In this study, we assessed the functional effects of these polymorphisms on MMP1 gene promoter activity in cell lines of melanoma (A2058 and A375), breast cancer (MCF7 and MDA-MB-231), lung cancer (A549 and H69), and colorectal cancer (HT-29, SW-620) by comparing the promoter strengths of 10 most common haplotypes deriving from these polymorphisms. In A2058 cells, the GG-G-G-A-T-T-T and GG-G-G-A-C-T haplotypes had 2-fold higher promoter activity than the GG-G-T-A-T-T-C, GG-G-G-A-A-T-T, GG-G-G-A-T-T-C, and GG-G-G-A-A-C-T haplotypes, which in turn, had 3-fold higher promoter activity than the G-G-T-A-A-C-T, G-A-T-G-T-T-T, G-A-T-G-A-C-T, and G-A-T-G-A-T-G haplotypes. In A375 and MDA-MB-231 cells, high expression haplotypes include not only the -1607GG-bearing haplotypes but also the G-A-T-G-A-T-T haplotype containing the -1607G allele. A similar trend was detected in A549 cells. In addition, in A549 cells, the GG-G-G-A-T-T-T haplotype had > 2-fold higher promoter activity than several other 1607GG-bearing haplotypes. In MCF7 cells, the GG-G-G-A-T-T-T and G-G-T-A-A-C-T haplotypes had 1.5- to 4-fold higher promoter activity than the other haplotypes. These results suggest that the polymorphisms exert haplotype effects on the transcriptional regulation of the MMP1 gene in cancer cells, and indicate a need to examine haplotypes rather than any single polymorphism in genetic epidemiologic studies of the MMP1 gene in cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We sought to determine the mechanisms of downregulation of the airway transcription factor Foxa2 in lung cancer and the expression status of Foxa2 in non-small-cell lung cancer (NSCLC). Methods: A series of 25 lung cancer cell lines were evaluated for Foxa2 protein expression, FOXA2 mRNA levels, FOXA2 mutations, FOXA2 copy number changes and for evidence of FOXA2 promoter hypermethylation. In addition, 32 NSCLCs were sequenced for FOXA2 mutations and 173 primary NSCLC tumors evaluated for Foxa2 expression using an immunohistochemical assay. Results: Out of the 25 cell lines, 13 (52%) had undetectable FOXA2 mRNA. The expression of FOXA2 mRNA and Foxa2 protein were congruent in 19/22 cells (p = 0.001). FOXA2 mutations were not identified in primary NSCLCs and were infrequent in cell lines. Focal or broad chromosomal deletions involving FOXA2 were not present. The promoter region of FOXA2 had evidence of hypermethylation, with an inverse correlation between FOXA2 mRNA expression and presence of CpG dinucleotide methylation (p < 0.0001). In primary NSCLC tumor specimens, there was a high frequency of either absence (42/173, 24.2%) or no/low expression (96/173,55.4%) of Foxa2. In 130 patients with stage I NSCLC there was a trend towards decreased survival in tumors with no/low expression of Foxa2 (HR of 1.6, 95%CI 0.9-3.1; p = 0.122). Conclusions: Loss of expression of Foxa2 is frequent in lung cancer cell lines and NSCLCs. The main mechanism of downregulation of Foxa2 is epigenetic silencing through promoter hypermethylation. Further elucidation of the involvement of Foxa2 and other airway transcription factors in the pathogenesis of lung cancer may identify novel therapeutic targets. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene. ErbB1 encodes epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, involved mainly in cell proliferation and survival. EGFR overexpression has been associated with more aggressive disease, poor prognosis, low survival rate and low response to therapy. ErbB1 amplification and mutation are associated with tumor development and are implicated in ineffective treatment. The aim of the present study was to investigate whether the ErbB1 copy number affects EGFR expression, cell proliferation or cell migration by comparing two different cell lines. Methods The copies of ErbB1 gene was evaluated by FISH. Immunofluorescence and Western blotting were performed to determine location and expression of proteins mentioned in the present study. Proliferation was studied by flow cytometry and cell migration by wound healing assay and time lapse. Results We investigated the activation and function of EGFR in the A549 and HK2 lung cancer cell lines, which contain 3 and 6 copies of ErbB1, respectively. The expression of EGFR was lower in the HK2 cell line. EGFR was activated after stimulation with EGF in both cell lines, but this activation did not promote differences in cellular proliferation when compared to control cells. Inhibiting EGFR with AG1478 did not modify cellular proliferation, confirming previous data. However, we observed morphological alterations, changes in microfilament organization and increased cell migration upon EGF stimulation. However, these effects did not seem to be consequence of an epithelial-mesenchymal transition. Conclusion EGFR expression did not appear to be associated to the ErbB1 gene copy number, and neither of these aspects appeared to affect cell proliferation. However, EGFR activation by EGF resulted in cell migration stimulation in both cell lines.