974 resultados para LI-FRAUMENI
Resumo:
Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A computationally efficient Li-ion battery model has been proposed in this paper. The battery model utilizes the features of both analytical and electrical circuit modeling techniques. The model is simple as it does not involve a look-up table technique and fast as it does not include a polynomial function during computation. The internal voltage of the battery is modeled as a linear function of the state-of-charge of the battery. The internal resistance is experimentally determined and the optimal value of resistance is considered for modeling. Experimental and simulated data are compared to validate the accuracy of the model.
Resumo:
Polypyrrole (PPY) is grown on reduced graphene oxide (RGO) and the composite is studied as a catalyst for O-2 electrode in Li-O-2 cells. PPY is uniformly distributed on the two dimensional RGO layers. Li-O-2 cells assembled in a non-aqueous electrolyte using RGO-PPY catalyst exhibit an initial discharge capacity as high as 3358 mAh g(-1) (3.94 mAh cm(-2)) at a current density of 0.3 mA cm(-2). The voltage gap between the charge and discharge curves is less for Li-O-2(RGO-PPY) cell in comparison with Li-O-2(RGO) cell. The Li-O-2(RGO-PPY) cell delivers a discharge capacity of 550 mAh g(-1) (0.43 mAh cm(-2)) at a current density of 1.0 mA cm(-2). The results suggest that RGO-PPY is a promising catalyst of O-2 electrode for high rate rechargeable Li-O-2 cells. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Flower-like hierarchical architectures of layered SnS2 have been synthesized ionothermally for the first time, using a water soluble EMIM]BF4 ionic liquid (IL) as the solvent medium. At lower reaction temperatures, the hierarchical structures are formed of few-layered polycrystalline 2D nanosheet-petals composed of randomly oriented nanoparticles of SnS2. The supramolecular networks of the IL serve as templates on which the nanoparticles of SnS2 are glued together by combined effects of hydrogen bonding, electrostatic, hydrophobic and imidazolium stacking interactions of the IL, giving rise to polycrystalline 2D nanosheet-petals. At higher reaction temperatures, single crystalline plate-like nanosheets with well-defined crystallographic facets are obtained due to rapid inter-particle diffusion across the IL. Efficient surface charge screening by the IL favors the aggregation of individual nanosheets to form hierarchical flower-like architectures of SnS2. The mechanistic aspects of the ionothermal bottom-up hierarchical assembly of SnS2 nanosheets are discussed in detail. Li-ion storage properties of the pristine SnS2 samples are examined and the electrochemical performance of the sample synthesized at higher temperatures is found to be comparable to that reported for pristine SnS2 samples in the literature.
Resumo:
Graphene with large surface area and robust structure has been proposed as a high storage capacity anode material for Li ion batteries. While the inertness of pristine graphene leads to better Li kinetics, poor adsorption leads to Li clustering, significantly affecting the performance of the battery. Here, we show the role of defects and doping in achieving enhanced adsorption without compromising on the high diffusivity of Li. Using first principles density functional theory (DFT) calculations, we carry out a comprehensive study of diffusion kinetics of Li over the plane of the defective structures and calculate the change in the number of Li atoms in the vicinity of defects, with respect to pristine graphene. Our results show that the Li-C interaction, storage capacity and the energy barriers depend sensitively on the type of defects. The un-doped and boron doped mono-vacancy, doped di-vacancy up to two boron, one nitrogen doped di-vacancy, and Stone-Wales defects show low energy barriers that are comparable to pristine graphene. Furthermore, boron doping at mono-vacancy enhances the adsorption of Li. In particular, the two boron doped mono-vacancy graphene shows both a low energy barrier of 0.31 eV and better adsorption, and hence can be considered as a potential candidate for anode material.
Resumo:
A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.
Resumo:
Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.
Resumo:
The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.
Resumo:
All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i. e., BO33-), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.
Resumo:
A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLiLi1/3Mn2/3]O-2.(1 - x) LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (LiLi1/3Mn2/3]O-2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 degrees C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g(-1) at C/10 rate as compared to 180 mA h g(-1) for LiNi0.5Mn1.5O4 in the potential range of 2.4-4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 degrees C. Also, the integrated cathode material can exhibit 105 mA h g(-1) at 2 C rate as compared to 78 mA h g(-1) for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.
Resumo:
Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Iridium nanoparticles-anchored reduced graphene oxide (Ir-RGO) was prepared by simultaneous reduction of graphene oxide and Ir3+ ions and its catalytic activity for oxygen electrode in Li-O-2 cells was demonstrated. Ir particles with an average size of 3.9 nm were uniformly distributed on RGO sheets. The oxygen reduction reaction (ORR) was studied on an Ir-RGO catalyst in non-aqueous electrolytes using cyclic voltammetry and rotating disk electrode techniques. Li-O-2 cells with Ir-RGO as a bifunctional oxygen electrode catalyst were subjected to charge-discharge cycling at several current densities. A discharge capacity of 9529 mA h g(-1) (11.36 mA h cm(-2)) was obtained initially at a current density of 0.5 mA cm(-2) (393 mA g(-1)). A decrease in capacity was observed on increasing the current density. Although there was a decrease in capacity on repeated discharge-charge cycling initially, a stable capacity was observed for about 30 cycles. The results suggest that Ir-RGO is a useful catalyst for rechargeable Li-O-2 cells.
Resumo:
In the present study, a microwave-assisted, solution-based route has been employed to obtain porous CoO nano structures. Detailed characterization reveals that the flower-like nanostructures comprise petal-like sheets, each of which is made of an ordered, porous arrangement of crystallites of CoO measuring about 6 nm. TEM analysis shows that each ``petal'' is an oriented aggregate of CoO nanocrystals, such aggregation promoted by the hydroxyl moieties derived from the solution. The structure provides a large specific area as well as the porosity desirable in electrodes in Li-ion batteries. Electrochemical measurements carried out on electrodes made of nanostructured CoO show excellent Li ion-storing capability. A specific capacitance of 779 mAh g(-1) has been measured at a specific current of 100 mA g(-1). Measurements show also excellent cyclability and coulombic efficiency. Impedance spectroscopy provides evidence for charge transfer occurring in the porous networks. (C) 2015 Elsevier B.V. All rights reserved.