992 resultados para LEAF-AREA INDEX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patches of seasonally dry tropical forests occur on limestone outcrops in Central Brazil surrounded by the dominant savanna vegetation. They contain valuable timber species but are threatened by farming and mining activities. The objective of this study was to describe canopy opening and light relations in two seasonally deciduous dry forests on slopes and limestone outcrops, in the Paranã valley at the northeastern region of the Goiás state, Brazil. The studied forests were in the Fazenda Sabonete in Iaciara-Go and Fazenda Forquilha in Guarani-GO. Woody plants were sampled in 25 (20 x 20 m) plots in each forest. In the Sabonete forest 40 species, 705 ind./ha-1 with a basal area of 15.78 m²/ha-1 were found, while in Forquilha there were 55 species, 956 ind./ha-1 with a basal area of 24.76 m²/ha-1. Using hemispherical photographic techniques, 25 black and white photographs were taken at each site, during the dry season, totaling 50 photographs. These were taken at the beginning of each vegetation-sampling plot. The photographs were scanned in grey tones and saved as 'Bitmap'. The canopy opening and leaf area index (LAI) were calculated using the software Winphot. The mean canopy opening was 54.0% (±9.36) for Fazenda Sabonete and 64.6% (±11.8) in Fazenda Forquilha, with both sites presenting significant differences in the opening estimates (P < 0.05). Their floristic richness and structure also differed with the more open canopy forest, Forquilha, being richer and denser, suggesting the need for further studies on species-environment relationships in these forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to model light interception and distribution in the mixed canopy of Common cocklebur (Xanthium stramarium) with corn. An experiment was conducted in factorial arrangement on the basis of randomized complete blocks design with three replications in Gonabad in 2006-2007 and 2007-2008 seasons. The factors used in this experiment include corn density of 7.5, 8.5 and 9.5 plants per meter of row and density of Common cocklebur of zero, 2, 4, 6 and 8 plants per meter of row. INTERCOM model was used through replacing parabolic function with triangular function of leaf area density. Vertical distribution of the species' leaf area showed that corn has concentrated the most leaf area in layer of 80 to 100 cm while Common cocklebur has concentrated in 35-50 cm of canopy height. Model sensitivity analysis showed that leaf area index, species' height, height where maximum leaf area is seen (hm), and extinction coefficient have influence on light interception rate of any species. In both species, the distribution density of leaf area at the canopy length fit a triangular function, and the height in which maximum leaf area was observed was changed by change in density. There was a correlation between percentage of the radiation absorbed by the weed and percentage of corn seed yield loss (r² = 0.89). Ideal type of corn was determined until the stage of tasseling in competition with weed. This determination indicates that the corn needs more height and leaf area, as well as less extinction coefficient to successfully fight against the weed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field experiment was conducted for two consecutive years to study the effect of fertilizer application methods and inter and intra-row weed-crop competition durations on density and biomass of different weeds and growth, grain yield and yield components of maize. The experimental treatments comprised of two fertilizer application methods (side placement and below seed placement) and inter and intra-row weed-crop competition durations each for 15, 30, 45, and 60 days after emergence, as well as through the crop growing period. Fertilizer application method didn't affect weed density, biomass, and grain yield of maize. Below seed fertilizer placement generally resulted in less mean weed dry weight and more crop leaf area index, growth rate, grain weight per cob and 1000 grain weight. Minimum number of weeds and dry weight were recorded in inter-row or intra-row weed-crop competition for 15 DAE. Number of cobs per plant, grain weight per cob, 1000 grain weight and grain yield decreased with an increase in both inter-row and intra-row weed-crop competition durations. Maximum mean grain yield of 6.35 and 6.33 tha-1 were recorded in inter-row and intra-row weed competition for 15 DAE, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A análise da dinâmica do dossel tem grande importância para se avaliar o efeito da urbanização nos fragmentos florestais, uma vez que alterações nas copas resultam em modificações abióticas e bióticas abaixo destas. Para a analise da dinâmica do dossel, avaliou-se a produção de serapilheira e o índice de área foliar (IAF), obtido por três diferentes metodologias, durante dois anos, em um fragmento de mata semidecídua, do perímetro urbano de Belo Horizonte, MG. A produção de serapilheira média anual foi de aproximadamente 6,47 t. ha-1. ano-1, com grande variação sazonal. Os valores médios de IAF obtidos a partir de fotografias hemisféricas (IAF-foto) e utilizando o LAI-2000 (LI-COR) (IAF-LAI2000), no final da estação chuvosa, foram respectivamente, 2,3 e 4,9 e 0,78 e 1,3, na estação seca. Esses valores foram superiores aos valores de IAF obtidos a partir da área foliar específica das folhas da serapilheira (IAF-serapilheira). Os métodos utilizando imagens hemisféricas (IAF-foto e IAF-LAI2000) mostraram, apesar de valores distintos, a dinâmica do dossel de maneira similar. O IAF-serrapilheira mostra essa dinâmica de maneira inversa, com uma boa relação linear negativa entre os valores de IAF, obtidos através das imagens hemisféricas, e os valores de IAF obtidos através das folhas da serapilheira. Esses resultados sugerem que as três metodologias igualmente podem ser utilizadas para registrar a dinâmica do dossel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin de mieux comprendre les effets des changements climatiques sur le pergélisol, il s’avère essentiel d’obtenir une meilleure connaissance des facteurs physiques et biologiques l’influençant. Même si plusieurs études font référence à l’influence de la végétation sur le pergélisol à grande échelle, l’effet de la végétation sur la profondeur du front de dégel du pergélisol à l’échelle de mètres, tel qu’exploré ici, est peu connu. L’étude s’est effectuée dans une forêt boréale tourbeuse dans la zone à pergélisol discontinu au sud des Territoires du Nord-Ouest (N61°18’, O121°18’). Nous avons comparé la profondeur de dégel aux mesures du couvert végétal suivantes : densité arborescente, couvert arbustif, indice de surface foliaire et présence de cryptogames (lichens et bryophytes). Nous avons trouvé qu’une plus grande densité arborescente menait à une moins grande profondeur de dégel tandis que le couvert arbustif (<50cm de hauteur) n’avait aucune influence. De plus, la profondeur de dégel dépendait de l’espèce des cryptogames et des microformes. Cette recherche quantifie l’influence de la végétation par strate sur la dégradation du pergélisol. Ultimement, les résultats pourront être pris en considération dans la mise en place des modèles, afin de valider les paramètres concernant la végétation, la dégradation du pergélisol et le flux du carbone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, increased emphasis has been placed on diversifying the types of trees to shade cacao (Theobroma cacao L.) and to achieve additional services. Agroforestry systems that include profitable and native timber trees are a viable alternative but it is necessary to understand the growth characteristics of these species under different environmental conditions. Thus, timber tree species selection should be based on plant responses to biotic and abiotic factors. The aims of this study were (1) to evaluate growth rates and leaf area indices of the four commercial timber species: Cordia thaisiana, Cedrela odorata, Swietenia macrophylla and Tabebuia rosea in conjunction with incidence of insect attacks and (2) to compare growth rates of four Venezuelan Criollo cacao cultivars planted under the shade of these four timber species during the first 36 months after establishment. Parameters monitored in timber trees were: survival rates, growth rates expressed as height and diameter at breast height and leaf area index. In the four Cacao cultivars: height and basal diameter. C. thaisiana and C. odorata had the fastest growth and the highest survival rates. Growth rates of timber trees will depend on their susceptibility to insect attacks as well as to total leaf area. All cacao cultivars showed higher growth rates under the shade of C. odorata. Growth rates of timber trees and cacao cultivars suggest that combinations of cacao and timber trees are a feasible agroforestry strategy in Venezuela.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungus Gaeumannomyces graminis var. tritici (Ggt), commonly known as the take-all fungus, causes damage to roots of wheat and barley that limits crop growth and causes loss of yield. There was little knowledge on the within-field spatial variation of take-all and relations with features in the growing crop, selected soil properties and spectral information from remotely sensed imagery. Geostatistical analyses showed that take-all, chlorosis and leaf area index had similar patchy distributions. Many of the spectral bands from a hyperspectral image also had similar spatial patterns to take-all and chlorosis. Relations between take-all and mineral nitrogen, elevation and pH were generally weaker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F-1 hybrid 'Midas'). A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha(-1)), poultry manure (5, 10 and 20 t ha(-1)) and barley mulch (5, 10 and 20 t ha(-1)), synthetic fertilizer (240 kg N ha(-1)): 21-0-0 and control). The lowest dry weight, height and leaf area index and sod organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha(-1)) and the double rate cow manure plots the had,greatest one. (6104 kg ha(-1)). High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values which were similar to the full rate cow manure treatment. The photosynthetic race of the untreated control was significantly lower than that of the other treatments. The phorosynthetic rate increased as poultry manure and barley mulch ram decreased and as cow manure increased. Furthermore the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).