971 resultados para LASER FLUORESCENCE METHOD
Resumo:
The authors describe a modification of the medial branch kryorhizotomy technique for the treatment of lumbar facet joint syndrome using a fluoroscopy-based laser-guided method. A total of 32 patients suffering from lumbar facet joint syndrome confirmed by positive medial nerve block underwent conventional or laser-guided kryorhizotomy. The procedural time (20.6 +/- 1.0 vs 16.3 +/- 0.9 minutes, p < 0.01), fluoroscopy time (54.1 +/- 3.5 vs 28.2 +/- 2.4 seconds, p < 0.01), radiation dose (407.5 +/- 32.0 vs 224.1 +/- 20.3 cGy/cm(2), p < 0.01), and patient discomfort during the procedure (7.1 +/- 0.4 vs 5.2 +/- 0.4 on the visual analog scale, p < 0.01) were significantly reduced in the laser-guided group. There was a tendency for a better positioning accuracy when the laser guidance method was used (3.0 +/- 0.3 vs 2.2 +/- 0.3 mm of deviation from the target points, p > 0.05). No difference in the outcome was observed between the 2 groups of patients (visual analog scale score 3.5 +/- 0.2 vs 3.3 +/- 0.3, p > 0.05). This improved minimally invasive surgical technique offers advantages to conventional fluoroscopy-based kryorhizotomy.
Resumo:
The authors conducted an in vivo study to determine clinical cutoffs for a laser fluorescence (LF) device, an LF pen and a fluorescence camera (FC), as well as to evaluate the clinical performance of these methods and conventional methods in detecting occlusal caries in permanent teeth by using the histologic gold standard for total validation of the sample.
Resumo:
The aim of this study was to test whether the status of the adjacent tooth surface has an influence on the signal of a new laser fluorescence (LF) device for the detection of approximal caries. Seventy-eight teeth were selected from a pool of extracted permanent human molars, frozen at -20 degrees C until use. Before being measured the teeth were defrosted, cleaned, and any calculus removed. As a control, a defined approximal surface of each tooth was measured with the LF device holding the tip with the detecting- and the reverse-side on it, but without a neighboring tooth contacting the surface. The proximal site under examination was then placed adjacent to a tooth, which had deep dentinal caries, a composite restoration, a provisional ZnO-Eugenol restoration, or a ceramic restoration. The adjacent tooth with the ZnO-Eugenol restoration, the composite restoration, and the dentinal caries all demonstrated a statistically significant increase of LF readings on sound tooth surfaces. Teeth with enamel or dentinal caries were only slightly (and not statistically significantly) influenced by the different types of neighboring surfaces compared with the control LF readings. It can be concluded that caries detection of approximal tooth surfaces with the new LF system might be influenced by the condition of the adjacent tooth surface.
Resumo:
The aim of this in vitro study was to evaluate the influence of pit and fissure sealants on fluorescence readings using lasers. We selected 166 permanent molars and randomly divided them into 4 groups which were each treated with a different sealant (a commercially available clear sealant, 2 opaque sealants and an experimental nanofilled clear sealant). The teeth were independently measured twice by 2 experienced dentists using conventional laser fluorescence (LF) and a laser fluorescence pen device (LFpen), before and after sealing, and again after thermocycling to simulate the thermal stressing between the tooth and the dental materials. Friedman test showed no statistically significant changes using LF and LFpen for the commercial clear sealant group, although values tended to increase after sealing. However, the values increased significantly after thermocycling. There was a statistically significant decrease in fluorescence after application of opaque sealants. After application of the experimental nanofilled clear sealant, LF values increased only after thermocycling, whereas the LFpen values increased after sealing and after thermocycling as well. The intraclass correlation coefficient ranged from 0.87 to 0.96 for interexaminer and 0.82 to 0.94 for intraexaminer reproducibility. It was shown that pit and fissure sealants influence LF and LFpen readings, with the values increasing or decreasing according to the material used. In conclusion, both laser fluorescence devices could be useful as an adjunct to detect occlusal caries under unfilled clear sealants. Nevertheless, surfaces sealed with clear nanofilled material could be assessed using only the LF device.
Resumo:
This study compared the performance of fluorescence-based methods, radiographic examination, and International Caries Detection and Assessment System (ICDAS) II on occlusal surfaces. One hundred and nineteen permanent human molars were assessed twice by 2 experienced dentists using the laser fluorescence (LF and LFpen) and fluorescence camera (FC) devices, ICDAS II and bitewing radiographs (BW). After measuring, the teeth were histologically prepared and assessed for caries extension. The sensitivities for dentine caries detection were 0.86 (FC), 0.78 (LFpen), 0.73 (ICDAS II), 0.51 (LF) and 0.34 (BW). The specificities were 0.97 (BW), 0.89 (LF), 0.65 (ICDAS II), 0.63 (FC) and 0.56 (LFpen). BW presented the highest values of likelihood ratio (LR)+ (12.47) and LR- (0.68). Rank correlations with histology were 0.53 (LF), 0.52 (LFpen), 0.41 (FC), 0.59 (ICDAS II) and 0.57 (BW). The area under the ROC curve varied from 0.72 to 0.83. Inter- and intraexaminer intraclass correlation values were respectively 0.90 and 0.85 (LF), 0.93 and 0.87 (LFpen) and 0.85 and 0.76 (FC). The ICDAS II kappa values were 0.51 (interexaminer) and 0.61 (intraexaminer). The BW kappa values were 0.50 (interexaminer) and 0.62 (intraexaminer). The Bland and Altman limits of agreement were 46.0 and 38.2 (LF), 55.6 and 40.0 (LFpen) and 1.12 and 0.80 (FC), for intra- and interexaminer reproducibilities. The posttest probability for dentine caries detection was high for BW and LF. In conclusion, LFpen, FC and ICDAS II presented better sensitivity and LF and BW better specificity. ICDAS II combined with BW showed the best performance and is the best combination for detecting caries on occlusal surfaces.
Resumo:
Several non-invasive and novel aids for the detection of (and in some cases monitoring of) caries lesions have been introduced in the field of 'caries diagnostics' over the last 15 years. This chapter focusses on those available to dentists at the time of writing; continuing research is bound to lead to further developments in the coming years. Laser fluorescence is based on measurements of back-scattered fluorescence of a 655-nm light source. It enhances occlusal and (potentially) approximal lesion detection and enables semi-quantitative caries monitoring. Systematic reviews have identified false-positive results as a limitation. Quantitative light-induced fluorescence is another sensitive method to quantitatively detect and measure mineral loss both in enamel and some dentine lesions; again, the trade-offs with lower specificity when compared with clinical visual detection must be considered. Subtraction radiography is based on the principle of digitally superimposing two radiographs with exactly the same projection geometry. This method is applicable for approximal surfaces and occlusal caries involving dentine but is not yet widely available. Electrical caries measurements gather either site-specific or surface-specific information of teeth and tooth structure. Fixed-frequency devices perform best for occlusal dentine caries but the method has also shown promise for lesions in enamel and other tooth surfaces with multi-frequency approaches. All methods require further research and further validation in well-designed clinical trials. In the future, they could have useful applications in clinical practice as part of a personalized, comprehensive caries management system.
Resumo:
Although there has been a significant decrease in caries prevalence in developed countries, the slower progression of dental caries requires methods capable of detecting and quantifying lesions at an early stage. The aim of this study was to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent 2095 laser fluorescence device [LF], DIAGNOdent 2190 pen [LFpen], and VistaProof fluorescence camera [FC]) in monitoring the progression of noncavitated caries-like lesions on smooth surfaces. Caries-like lesions were developed in 60 blocks of bovine enamel using a bacterial model of Streptococcus mutans and Lactobacillus acidophilus . Enamel blocks were evaluated by two independent examiners at baseline (phase I), after the first cariogenic challenge (eight days) (phase II), and after the second cariogenic challenge (a further eight days) (phase III) by two independent examiners using the LF, LFpen, and FC. Blocks were submitted to surface microhardness (SMH) and cross-sectional microhardness analyses. The intraclass correlation coefficient for intra- and interexaminer reproducibility ranged from 0.49 (FC) to 0.94 (LF/LFpen). SMH values decreased and fluorescence values increased significantly among the three phases. Higher values for sensitivity, specificity, and area under the receiver operating characteristic curve were observed for FC (phase II) and LFpen (phase III). A significant correlation was found between fluorescence values and SMH in all phases and integrated loss of surface hardness (ΔKHN) in phase III. In conclusion, fluorescence-based methods were effective in monitoring noncavitated caries-like lesions on smooth surfaces, with moderate correlation with SMH, allowing differentiation between sound and demineralized enamel.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with an Aquatic Laser Fluorescence Analyzer (ALFA) (Chekalyuk et al., 2014), connected in-line to the TARA flow through system during 2013. The ALFA instrument provides dual-wavelength excitation (405 and 514 nm) of laser-stimulated emission (LSE) for spectral and temporal analysis. It offers in vivo fluorescence assessments of phytoplankton pigments, biomass, photosynthetic yield (Fv/Fm), phycobiliprotein (PBP)-containing phytoplankton groups, and chromophoric dissolved organic matter (CDOM) (Chekalyuk and Hafez, 2008; 2013A). Spectral deconvolution (SDC) is used to assess the overlapped spectral bands of aquatic fluorescence constituents and water Raman scattering (R). The Fv/Fm measurements are spectrally corrected for non-chlorophyll fluorescence background produced by CDOM and other constituents (Chekalyuk and Hafez, 2008). The sensor was cleaned weakly following the manufacturer recommended protocol.
Resumo:
We demonstrate the development of femtosecond laser inscribed superstructure fiber gratings (fsSFG) in silica optical fibre. We utilise a single step process, to inscribe low loss and polarisation independent, sampled gratings in optical fibres using the point by point femtosecond laser inscription method. Our approach results in a controlled modulated index change with complete suppression of any overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. We also solve Maxwell's equations and calculate the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis and the estimation of inscription parameters such as ac index modulation, wavelength and the relative peak strength. We also explore how changes in the grating's period influence the reflection spectrum.
Resumo:
We demonstrate the development of femtosecond laser inscribed superstructure fiber gratings (fsSFG) in silica optical fibre. We utilise a single step process, to inscribe low loss and polarisation independent, sampled gratings in optical fibres using the point by point femtosecond laser inscription method. Our approach results in a controlled modulated index change with complete suppression of any overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. We also solve Maxwell's equations and calculate the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis and the estimation of inscription parameters such as ac index modulation, wavelength and the relative peak strength. We also explore how changes in the grating's period influence the reflection spectrum.
Resumo:
Background: In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. Results: The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. Conclusion: This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.
Resumo:
Road surface macrotexture is identified as one of the factors contributing to the surface's skid resistance. Existing methods of quantifying the surface macrotexture, such as the sand patch test and the laser profilometer test, are either expensive or intrusive, requiring traffic control. High-resolution cameras have made it possible to acquire good quality images from roads for the automated analysis of texture depth. In this paper, a granulometric method based on image processing is proposed to estimate road surface texture coarseness distribution from their edge profiles. More than 1300 images were acquired from two different sites, extending to a total of 2.96 km. The images were acquired using camera orientations of 60 and 90 degrees. The road surface is modeled as a texture of particles, and the size distribution of these particles is obtained from chord lengths across edge boundaries. The mean size from each distribution is compared with the sensor measured texture depth obtained using a laser profilometer. By tuning the edge detector parameters, a coefficient of determination of up to R2 = 0.94 between the proposed method and the laser profilometer method was obtained. The high correlation is also confirmed by robust calibration parameters that enable the method to be used for unseen data after the method has been calibrated over road surface data with similar surface characteristics and under similar imaging conditions.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Effect of low oxygen pressure on structural and magnetic properties of quenched SrFe12O19 thin films
Resumo:
Strontium hexaferrite thin films have been grown on glass substrates at room temperature in oxygen environment by pulsed laser deposition method. The effect of oxygen pressure (p(o2)) on the structural and magnetic properties has been investigated. The as-deposited films were found to be amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 850 A degrees C in air. The thickness of the film increased with p(o2). The film grown at p(o2) = 0.455 Pa had a clear hexagonal structure. The values of coercivity for the films were found to increase with p(o2).
Resumo:
为了测量强界面电镀铬层的界面韧性,利用连续CO_2激光器对钢基体上的电镀铬层表面进行循环扫描实验。结果表明:该种加热方式能够诱发铬层沿激光扫描方向呈周期性分布的屈曲变形。在此基础上,结合涂层屈曲变形理论,提出测量镀铬层界面韧性的激光屈曲法。该方法只需对一个屈曲单元的最大屈曲高度和屈曲半长进行测量,就可给出界面韧性。作为应用举例,利用该方法对上述镀铬层/钢基体结构界面韧性进行了测量。