927 resultados para LACTATE
Resumo:
Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.
Resumo:
Aim. The objective of this study was to verify the effects of active (AR) and passive recovery (PR) after a judo match on blood lactate removal and on performance in an anaerobic intermittent task (4 bouts of upper body Wingate tests with 3-min interval between bouts; 4WT).Methods. The sample was constituted by 17 male judo players of different competitive levels: A) National (Brazil) and International medallists (n. 5). B) State (São Paulo) medallists (n. 7). Q City (São Paulo) medallists (n. 5). The subjects were submitted to: 1) a treadmill test for determination of VO2peak and velocity at anaerobic threshold (VAT); 2) body composition; 3) a 5-min judo combat, 15-min of AR or PR followed by 4WT.Results. The groups did not differ with respect to: body weight, VO2peak, VAT, body fat percentage, blood lactate after combats. No difference was observed in performance between AR and PR, despite a lower blood lactate after combat (10 and 15 min) during AR compared to PR. Groups A and B performed better in the high-intensity intermittent exercise compared to athletes with lower competitive level (C).Conclusion. The ability to maintain power output during intermittent anaerobic exercises can discriminate properly judo players of different levels. Lactate removal was improved with AR when compared to PR but AR did not improve performance in a subsequent intermittent anaerobic exercise.
Resumo:
Aim. The aim of the present study was to investigate the validity of the Lactate Minimum Test (LMT) for the determination of peak VO2 on a cycle ergometer and to determine the submaximal oxygen uptake (VO2) and pulmonary ventilation (VE) responses in an incremental exercise test when it is preceded by high intensity exercise (i.e., during a LMT).Methods. Ten trained male athletes (triathletes and cyclists) performed 2 exercise tests in random order on an electromagnetic cycle ergometer: 1) Control Test (CT): an incremental test with an initial work rate of 100 W, and with 25 W increments at 3-min intervals, until voluntary exhaustion; 2) LMT: an incremental test identical to the CT, except that it was preceded by 2 supramaximal bouts of 30-sec (similar to120% VO(2)peak) with a 30-sec rest to induce lactic acidosis. This test started 8 min after the induction of acidosis.Results. There was no significant difference in peak VO2 (65.6+/-7.4 ml.kg(-1).min(-1); 63.8+/-7.5 ml.kg(-1).min(-1) to CT and LMT, respectively). However, the maximal power output (POmax) reached was significantly higher in CT (300.6+/-15.7 W) than in the LMT (283.2+/-16.0 W).VO2 and VE were significantly increased at initial power outputs in LMT.Conclusion. Although the LMT alters the submaximal physiological responses during the incremental phase (greater initial metabolic cost), this protocol is valid to evaluate peak VO2, although the POmax reached is also reduced.
Resumo:
The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.
Resumo:
Lactate is a compound produced by the anaerobic metabolism of glucose, and hyperlactataemia occurs when the rate of production of lactate exceeds the rate of elimination. This occurs in situations of hypoxia and tissue hypoperfusion. Lactate has been considered a useful prognostic indicator in critically ill patients. Pyometra is a disease of adult female dogs characterized by inflammation of the uterus with an accumulation of exudate, which occurs during the luteal phase. It is one of the most common diseases that occur in the genital tract of female dogs. A total of 31 dogs were diagnosed with pyometra. The diagnosis was confirmed at ultrasonography. of the 31 dogs, 25 females had open cervix pyometra and six had closed cervix pyometra. Plasma lactate concentrations were determined by an enzymatic colorimetric method. The average concentration (+/- SD) of plasma lactate in all 31 bitches with pyometra was 3.55 +/- 0.46 mm. Healthy dogs had plasma lactate concentrations between 0.3 and 2.5 mm (mean +/- SD). Concentrations ranged from 0.8 to 2.9 mm when plasma lactate was measured with a portable device and 0.42.6 mm with the blood gas analyser. Even though plasma lactate values vary between several studies and equipment used to measure concentrations, our results for dogs with pyometra are higher indicating hyperlactataemia (Thorneloe et al. , Can Vet J 48, 283288). Plasma lactate in dogs with closed cervix pyometra was mean +/- SD and in dogs with open cervix pyometra, it was mean +/- SD. The plasma lactate concentration in dogs with pyometra was higher than in healthy bitches, and there was no influence of patency of the cervix on the concentration of plasma lactate concentrations. Plasma lactate concentrations were similar for animals with open and closed pyometra (3.54 +/- 0.52 to 3.64 +/- 1.03 mm).
Resumo:
This study analyzed the influence of recovery phase manipulation after hyperlactemia induction on the lactate minimum intensity during treadmill running. Twelve male runners (24.6 +/- A 6.3 years; 172 +/- A 8.0 cm and 62.6 +/- A 6.1 kg) performed three lactate minimum tests involving passive (LMT(P)) and active recoveries at 30%vVO(2max) (LMT(A30)) and 50%vVO(2max) (LMT(A50)) in the 8-min period following initial sprints. During subsequent graded exercise, lactate minimum speed and VO(2) in LMT(A50) (12.8 +/- A 1.5 km h(-1) and 40.3 +/- A 5.1 ml kg(-1) min(-1)) were significantly lower (P < 0.05) than those in LMT(A30) (13.3 +/- A 1.6 km h(-1) and 42.9 +/- A 5.3 ml kg(-1) min(-1)) and LMT(P) (13.8 +/- A 1.6 km h(-1) and 43.6 +/- A 6.1 ml kg(-1) min(-1)). In addition, lactate minimum speed in LMT(A30) was significantly lower (P < 0.05) than that in LMT(P). These results suggest that lactate minimum intensity is lowered by active recovery after hyperlactemia induction in an intensity-dependent manner compared to passive recovery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Few studies dealing with effort intensity during swimming exercise in rats have been reported in the literature. Recently, with the use of the lactate minimum test (LMT), our group estimated the minimum blood lactate (MBL) of rats during swimming exercises. This information allowed accurate evaluation of the effort intensity developed by rats during swimming exercise. The present study was designed to evaluate the effects of swimming exercise sessions in below, equivalent and above intensities to MBL, on protein metabolism of rats. Adult (90 days) sedentary male Wistar rats were used in the present study. Mean values of MBL, in the present study, were obtained at blood concentration of 6.7 +/- 0.4 mmol/L with a load of 5% bw. The animals were sacrificed at rest (R) or immediately after a single swimming session (30 min) supporting loads below (3.5% bw), equivalent (5.0% bw) and high load (6.5% bw) to AT. Blood samples were collected each 5 min of exercise for lactate determination. Soleus muscle protein synthesis (amount of L-[C-14] fenil alanyn incorporation to protein) and breakdown (tyrosin release) rates were evaluated. Blood lactate concentrations (mmol/L) stabilized with the below (5.4 +/- 0.01) and equivalent (6.4 +/- 0.006) to MBL but increased, progressively, with the high load. There were no differences in protein synthesis (pmol/mg.h) among rest values (65.2 +/- 3.4) and after-exercise supporting the loads below (61.5 +/- 1.3) and the equivalent (60.7+/-1.7) to MBL but there was a decrease with the high load (36.6+/-2.0). Protein breakdown rates (pmol/g.h) increase after exercise supporting the loads below (227.0 +/- 6.1), equivalent (227.9 +/- 6.0) and high (363.6 +/- 7.1) to MBL in relation to the rest (214.3 +/- 6.0). The results indicate the viability of the application of LMT in studies with rats since it detected alterations imposed by exercise.
Resumo:
The aim of this study was to analyze the effects of exercise mode on the validity of onset of blood lactate accumulation (OBLA-3.5-mM fixed blood lactate concentration) to predict the work-rate at maximal lactate steady state (MLSSwork-rate). Eleven recreationally active mates (21.3 +/- 2.9 years, 72.8 +/- 6.7 kg, 1.78 +/- 0.1 m) performed randomly incremental tests to determine OBLA (stage duration of 3 min), and 2 to 4 constants work-rate exercise tests to directly determine maximal lactate steady state parameters on a cycle-ergometer and treadmill. For both exercise modes, the OBLA was significantly correlated to MLSSwork-rate, (cycling: r = 0.81 p = 0.002; running: r = 0.94, p < 0.001). OBLA (156.2 +/- 41.3 W) was lower than MLSSwork-rate (179.6 +/- 26.4 W) during cycling exercise (p = 0.007). However, for running exercise, there was no difference between OBLA (3.2 +/- 0.6 m s(-1)) and MLSSwork-rate (3.1 +/- 0.4 m s(-1)). The difference between OBLA and MLSSworkrate on the cycle-ergometer (r = 0.86; p < 0.001) and treadmill (r = 0.64; p = 0.048) was significantly related to the specific MLSS. We can conclude that the validity of OBLA on predicting MLSSwork-rate is dependent on exercise mode and that its disagreement is related to individual variations in MLSS. (C) 2007 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)