323 resultados para Kohler, KaufmannKohler, KaufmannKaufmannKohler
Resumo:
Background: To optimize patient functioning, rehabilitation professionals often rely on measurements of functioning as well as on classifications. Although the International Classification of Diseases (ICD) and the International Classification of Functioning, Disability and Health (ICF) are used, their joint use has yet to become an established practice. To encourage their joint use in daily practice, the World Health Organization (WHO) has invited all rehabilitation practitioners worldwide to support the ICD-11 revision process by identifying the ICF categories that correspond to specific rehabilitation-relevant health conditions. The first step in completing this task, generating the list of these health conditions, was taken at a February 2012 workshop in Sao Paulo, Brazil. Objectives: The objectives of this paper are to present the results of the Sao Paulo workshop, and to invite practitioners to participate in the ICD-ICF joint use initiative. Discussion: Alternating plenary and small working group sessions were held and 103 rehabilitation-relevant health conditions were identified. With this list available, WHO together with the International Society of Physical and Rehabilitation Medicine (ISPRM), is reaching out to clinicians of all rehabilitation disciplines to take on the challenge of identifying the ICF categories for at least one of the health conditions listed.
Resumo:
We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
Resumo:
Background: The alpha-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results: In this work, we show that the ECF sigma factor sigma(F) is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that sigma(F) controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, sigma(F) itself is not strongly auto-regulated under metal stress conditions. Interestingly, sigma(F)-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved sigma(F)-dependent sequence is located upstream of all genes of the sigma(F) regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of sigma(F) function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of sigma(F)-dependent genes at basal levels. Furthermore, we show that sigma(F) is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion: A possible mechanism for induction of the sigma(F)-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of sigma(F) to bind RNA polymerase core and drive transcription of its regulon.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
Background The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Early classification of ischemic stroke subtype is important for secondary stroke prevention and may guide further investigations.
Resumo:
We have recently shown that FXIII activation peptide (AP-FXIII) can be measured in plasma. The objective of this pilot study was to investigate for the first time if AP-FXIII can be detected in plasma from patients with acute ischaemic stroke.
Resumo:
Physicians treating patients with posterior circulation strokes (PCS) tended to debate more on whether or not to introduce anticoagulation rather than performing investigations to identify stroke aetiology, as in patients with anterior circulation strokes (ACS). Recent findings suggest that stroke aetiologies of PCS and ACS are more alike than dissimilar, suggesting that PCS deserve the same investigations as ACS. The characteristics and current diagnostic evaluation between patients with PCS and ACS were compared.
Resumo:
Coagulation factor XIII (FXIII) stabilizes fibrin fibers and is therefore a major player in the maintenance of hemostasis. FXIII is activated by thrombin resulting in cleavage and release of the FXIII activation peptide (AP-FXIII). The objective of this study was to characterize the released AP-FXIII and determine specific features that may be used for its specific detection. We analyzed the structure of bound AP-FXIII within the FXIII A-subunit and interactions of AP-FXIII by hydrogen bonds with both FXIII A-subunit monomers. We optimized our previously developed AP-FXIII ELISA by using 2 monoclonal antibodies. We determined high binding affinities between the antibodies and free AP-FXIII and demonstrated specific binding by epitope mapping analyses with surface plasmon resonance and enzyme-linked immunosorbent assay. Because the structure of free AP-FXIII had been characterized so far by molecular modeling only, we performed structural analysis by nuclear magnetic resonance. Recombinant AP-FXIII was largely flexible both in plasma and water, differing significantly from the rigid structure in the bound state. We suggest that the recognized epitope is either occluded in the noncleaved form or possesses a structure that does not allow binding to the antibodies. On the basis of our findings, we propose AP-FXIII as a possible new marker for acute thrombotic events.
Resumo:
Severe factor XIII (FXIII) deficiency is a rare autosomal recessive coagulation disorder affecting one in two million individuals. The aim of the present study was to screen for and analyse F13B gene defects in the German population. A total of 150 patients presenting with suspected FXIII deficiency and one patient with severe (homozygous) FXIII deficiency were screened for mutations in F13A and F13B genes. Twenty-five individuals presented with detectable heterozygous mutations, 12 of them in the F13A gene and 13 of them in the F13B gene. We report on the genotype-phenotype correlations of the individuals showing defects in the F13B gene. Direct sequencing revealed 12 unique mutations including seven missense mutations (Cys5Arg, Ile81Asn, Leu116Phe, Val217Ile, Cys316Phe, Val401Glu, Pro428Ser), two splice site mutations (IVS2-1G>C, IVS3-1G>C), two insertions (c.1155_1158dupACTT, c.1959insT) and one in-frame deletion (c.471-473delATT). Two of the missense mutations (Cys5Arg, Cys316Phe) eliminated disulphide bonds (Cys5-Cys56, Cys316-Cys358). Another three missense mutations, (Leu116Phe, Val401Glu, Pro428Ser) were located proximal to other cysteine disulphide bonds, therefore indicating that the region in and around these disulphide bonds is prone to functionally relevant mutations in the FXIII-B subunit. The present study reports on a fairly common prevalence of F13B gene defects in the German population. The regions in and around the cysteine disulphide bonds in the FXIII-B protein may be regions prone to frequent mutations.
Resumo:
Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer.
Resumo:
In this functional magnetic resonance imaging study we tested whether the predictability of stimuli affects responses in primary visual cortex (V1). The results of this study indicate that visual stimuli evoke smaller responses in V1 when their onset or motion direction can be predicted from the dynamics of surrounding illusory motion. We conclude from this finding that the human brain anticipates forthcoming sensory input that allows predictable visual stimuli to be processed with less neural activation at early stages of cortical processing.