881 resultados para Kirchhoff Top
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Resumo:
We report a search for single top quark production with the CDF II detector using 2.1 fb-1 of integrated luminosity of pbar p collisions at sqrt{s}=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W -> tau nu decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b-quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations (sigma), with a median expected sensitivity of 1.4 sigma. Assuming a top quark mass of 175 GeV/c2 and ascribing the excess to single top quark production, the cross section is measured to be 4.9+2.5-2.2(stat+syst)pb, consistent with measurements performed in independent datasets and with the standard model prediction.
Resumo:
We present the results of a search for pair production of the supersymmetric partner of the top quark (the stop quark $\tilde{t}_{1}$) decaying to a $b$-quark and a chargino $\chargino$ with a subsequent $\chargino$ decay into a neutralino $\neutralino$, lepton $\ell$, and neutrino $\nu$. Using a data sample corresponding to 2.7 fb$^{-1}$ of integrated luminosity of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector, we reconstruct the mass of candidate stop events and fit the observed mass spectrum to a combination of standard model processes and stop quark signal. We find no evidence for $\pairstop$ production and set 95% C.L. limits on the masses of the stop quark and the neutralino for several values of the chargino mass and the branching ratio ${\cal B}(\chargino\to\neutralino\ell^{\pm}\nu)$.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of pp̅ collision data collected by the Collider Detector at Fermilab at √s=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3-0.5+0.6(stat+sys) pb, extract the value of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb|=0.91-0.11+0.11(stat+sys)±0.07 (theory), and set a lower limit |Vtb|>0.71 at the 95% C.L., assuming mt=175 GeV/c2.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.
Resumo:
We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy √s=1.96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb-1 collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence level in the stop quark versus sneutrino mass plane are set. Stop quark masses up to 180 GeV/c2 are excluded for sneutrino masses around 45 GeV/c2, and sneutrino masses up to 116 GeV/c2 are excluded for stop quark masses around 150 GeV/c2.
Resumo:
We investigate the effects of new physics scenarios containing a high mass vector resonance on top pair production at the LHC, using the polarization of the produced top. In particular we use kinematic distributions of the secondary lepton coming from top decay, which depends on top polarization, as it has been shown that the angular distribution of the decay lepton is insensitive to the anomalous tbW vertex and hence is a pure probe of new physics in top quark production. Spin sensitive variables involving the decay lepton are used to probe top polarization. Some sensitivity is found for the new couplings of the top.
Resumo:
We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0.88 +0.13 -0.12 (stat+sys) +- 0.07(theory), and set the limit |V_{tb}|>0.66 at the 95% C.L.
Resumo:
A precision measurement of the top quark mass m_t is obtained using a sample of ttbar events from ppbar collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m_t and a parameter DJES to calibrate the jet energy scale /in situ/. Using a total of 1087 events, a value of m_t = 173.0 +/- 1.2 GeV/c^2 is measured.
Resumo:
We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.
Resumo:
We report on the first search for top-quark production via flavor-changing neutral-current (FCNC) interactions in the non-standard-model process u(c)+g -> t using ppbar collision data collected by the CDF II detector. The data set corresponds to an integrated luminosity of 2.2/fb. The candidate events feature the signature of semileptonic top-quark decays and are classified as signal-like or background-like by an artificial neural network trained on simulated events. The observed discriminant distribution is in good agreement with the one predicted by the standard model and provides no evidence for FCNC top-quark production, resulting in a Bayesian upper limit on the production cross section sigma (u(c)+g -> t) u+g) c+g)
Resumo:
We report the recent charged Higgs search in top quark decays in 2.2/fb CDF data. This is the first attempt to search for charged Higgs using fully reconstructed mass assuming H->c-sbar in small tan beta region. No evidence of a charged Higgs is observed in the CDF data, hence 95% upper limits are placed at B(t->H+b)
First simultaneous measurement of the top quark mass in the lepton+jets and dilepton channels at CDF
Resumo:
We present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9fb^-1 of ppbar collisions collected at sqrt{s}=1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. We reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the dilepton channel. We perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. Using 332 lepton + jets candidate events and 144 dilepton candidate events, we measure the top quark mass to be mtop=171.9 +/- 1.7 (stat. + JES) +/- 1.1 (syst.) GeV/c^2 = 171.9 +/- 2.0 GeV/c^2.
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.