970 resultados para Kinetics analysis
Resumo:
SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a), Q(b), and Q(c)) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a) SNARE, leaving behind a Q(bc)R subcomplex. This subcomplex serves as an acceptor for a Q(a) SNARE from the opposite membrane, leading to Q(a)-Q(bc)R trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bc)R cis-complex and the formation of the Q(a)-Q(bc)R trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.
Resumo:
A novel approach to the study of hepatic glycogen kinetics and fractional gluconeogenesis in vivo is described. Ten healthy female subjects were fed an iso-caloric diet containing 55% carbohydrate energy with a 13C abundance of 1.083 atom percent for a 3-day baseline period; then, a diet of similar composition, but providing carbohydrate with a 13C abundance of 1.093 atom percent was started and continued for 5 days. Resting respiratory gas exchanges, urinary nitrogen excretion, breath 13CO2 and plasma 13C glucose were measured every morning in the fasting state. The enrichment in 13C of hepatic glycogen was calculated from these measured data. 13C glycogen enrichment increased after switching to a 13C enriched carbohydrate diet, and was identical to the 13C enrichment of dietary carbohydrates after 3 days. The time required to renew 50% of hepatic glycogen, as determined from the kinetics of 13C glycogen enrichment, was 18.9 +/- 3.6 h. Fractional gluconeogenesis, as determined from the difference between the enrichments of glucose oxidized originating from hepatic glycogen and plasma glucose 13C was 50.8 +/- 5.3%. This non-invasive method will allow the study of hepatic glycogen metabolism in insulin-resistant patients.
Resumo:
Background: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.Results: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38α deficient (p38α-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. Conclusions: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.
Resumo:
OBJECTIVE: The aim of this study was to determine whether V˙O(2) kinetics and specifically, the time constant of transitions from rest to heavy (τ(p)H) and severe (τ(p)S) exercise intensities, are related to middle distance swimming performance. DESIGN: Fourteen highly trained male swimmers (mean ± SD: 20.5 ± 3.0 yr; 75.4 ± 12.4 kg; 1.80 ± 0.07 m) performed an discontinuous incremental test, as well as square wave transitions for heavy and severe swimming intensities, to determine V˙O(2) kinetics parameters using two exponential functions. METHODS: All the tests involved front-crawl swimming with breath-by-breath analysis using the Aquatrainer swimming snorkel. Endurance performance was recorded as the time taken to complete a 400 m freestyle swim within an official competition (T400), one month from the date of the other tests. RESULTS: T400 (Mean ± SD) (251.4 ± 12.4 s) was significantly correlated with τ(p)H (15.8 ± 4.8s; r=0.62; p=0.02) and τ(p)S (15.8 ± 4.7s; r=0.61; p=0.02). The best single predictor of 400 m freestyle time, out of the variables that were assessed, was the velocity at V˙O(2max)vV˙O(2max), which accounted for 80% of the variation in performance between swimmers. However, τ(p)H and V˙O(2max) were also found to influence the prediction of T400 when they were included in a regression model that involved respiratory parameters only. CONCLUSIONS: Faster kinetics during the primary phase of the V˙O(2) response is associated with better performance during middle-distance swimming. However, vV˙O(2max) appears to be a better predictor of T400.
Resumo:
Contact aureoles provide an excellent geologic environment to study the mechanisms of metamorphic reactions in a natural system. The Torres del Paine (TP) intrusion is one of the most spectacular natural laboratories because of its excellent outcrop conditions. It formed in a period from 12.59 to 12.43 Ma and consists of three large granite and four smaller mafic batches. The oldest granite is on top, the youngest at the bottom of the granitic complex, and the granites overly the mafic laccolith. The TP intruded at a depth of 2-3 km into regional metamorphic anchizone to greenschist facies pelites, sandstones, and conglomerates of the Cerro Toro and Punta Barrosa formations. It formed a thin contact aureole of 150-400 m width. This thesis focuses on the reaction kinetics of the mineral cordierite in the contact aureole using quantitative textural analysis methods. First cordierite was formed from chlorite break¬down (zone I, ca. 480 °C, 750 bar). The second cordierite forming reaction was the muscovite break-down, which is accompanied by a modal decrease in biotite and the appearance of k- feldspar (zone II, 540-550 °C, 750 bar). Crystal sizes of the roundish, poikiloblastic cordierites were determined from microscope thin section images by manually marking each crystal. Images were then automatically processed with Matlab. The correction for the intersection probability of each crystal radius yields the crystal size distribution in the rock. Samples from zone I below the laccolith have the largest crystals (0.09 mm). Cordierites from zone II are smaller, with a maximum crystal radius of 0.057 mm. Rocks from zone II have a larger number of small cordierite crystals than rocks from zone I. A combination of these quantitative analysis with numerical modeling of nucleation and growth, is used to infer nucleation and growth parameters which are responsible for the observed mineral textures. For this, the temperature-time paths of the samples need to be known. The thermal history is complex because the main body of the intrusion was formed by several intrusive batches. The emplacement mechanism and duration of each batch can influence the thermal structure in the aureole. A possible subdivision of batches in smaller increments, so called pulses, will focus heat at the side of the intrusion. Focusing all pulses on one side increases the contact aureole size on that side, but decreases it on the other side. It forms a strongly asymmetric contact aureole. Detailed modeling shows that the relative thicknesses of the TP contact aureole above and below the intrusion (150 and 400 m) are best explained by a rapid emplacement of at least the oldest granite batch. Nevertheless, temperatures are significantly too low in all models, compared to observed mineral assemblages in the hornfelses. Hence, an other important thermal mechanisms needs to take place in the host rock. Clastic minerals in the immature sediments outside the contact aureole are hydrated due to small amounts of expelled fluids during contact metamorphism. This leads to a temperature increase of up to 50 °C. The origin of fluids can be traced by stable isotopes. Whole rock stable isotope data (6D and δ180) and chlorine concentrations in biotite document that the TP intrusion induced only very small amounts of fluid flow. Oxygen whole rock data show δ180 values between 9.0 and 10.0 %o within the first 5 m of the contact. Values increase to 13.0 - 15.0 %o further away from the intrusion. Whole rock 6D values display a more complex zoning. First, host rock values (-90 to -70 %o) smoothly decrease towards the contact by ca. 20 %o, up to a distance of ca. 150 m. This is followed by an increase of ca. 20 %o within the innermost 150 m of the aureole (-97.0 to -78 %o at the contact). The initial decrease in 6D values is interpreted to be due to Rayleigh fractionation accompanying the dehydration reactions forming cordierite, while the final increase reflects infiltration of water-rich fluids from the intrusion. An over-estimate on the quantity and the corresponding thermal effect yields a temperature increase of less than 30 °C. This suggests that fluid flow might have contributed only for a small amount to the thermal evolution of the system. A combination of the numerical growth model with the thermal model, including the hydration reaction enthalpies but neglecting fluid flow and incremental growth, can be used to numerically reproduce the observed cordierite textures in the contact aureole. This yields kinetic parameters which indicate fast cordierite crystallization before the thermal peak in the inner aureole, and continued reaction after the thermal peak in the outermost aureole. Only small temperature dependencies of the kinetic parameters seem to be needed to explain the obtained crystal size data. - Les auréoles de contact offrent un cadre géologique privilégié pour l'étude des mécanismes de réactions métamorphiques associés à la mise en place de magmas dans la croûte terrestre. Par ses conditions d'affleurements excellentes, l'intrusion de Torres del Paine représente un site exceptionnel pour améliorer nos connaissances de ces processus. La formation de cette intrusion composée de trois injections granitiques principales et de quatre injections mafiques de volume inférieur couvre une période allant de 12.50 à 12.43 Ma. Le plus vieux granite forme la partie sommitale de l'intrusion alors que l'injection la plus jeune s'observe à la base du complexe granitique; les granites recouvrent la partie mafique du laccolite. L'intrusion du Torres del Paine s'est mise en place a 2-3 km de profondeur dans un encaissant métamorphique. Cet encaissant est caractérisé par un métamorphisme régional de faciès anchizonal à schiste vert et est composé de pélites, de grès, et des conglomérats des formations du Cerro Toro et Punta Barrosa. La mise en place des différentes injections granitiques a généré une auréole de contact de 150-400 m d'épaisseur autour de l'intrusion. Cette thèse se concentre sur la cinétique de réaction associée à la formation de la cordiérite dans les auréoles de contact en utilisant des méthodes quantitatives d'analyses de texture. On observe plusieurs générations de cordiérite dans l'auréole de contact. La première cordiérite est formée par la décomposition de la chlorite (zone I, environ 480 °C, 750 bar), alors qu'une seconde génération de cordiérite est associée à la décomposition de la muscovite, laquelle est accompagnée par une diminution modale de la teneur en biotite et l'apparition de feldspath potassique (zone II, 540-550 °C, 750 bar). Les tailles des cristaux de cordiérites arrondies et blastic ont été déterminées en utilisant des images digitalisées des lames minces et en marquant individuellement chaque cristal. Les images sont ensuite traitées automatiquement à l'aide du programme Matlab. La correction de la probabilité d'intersection en fonction du rayon des cristaux permet de déterminer la distribution de la taille des cristaux dans la roche. Les échantillons de la zone I, en dessous du lacolite, sont caractérisés par de relativement grands cristaux (0.09 mm). Les cristaux de cordiérite de la zone II sont plus petits, avec un rayon maximal de 0.057 mm. Les roches de la zone II présentent un plus grand nombre de petits cristaux de cordiérite que les roches de la zone I. Une combinaison de ces analyses quantitatives avec un modèle numérique de nucléation et croissance a été utilisée pour déduire les paramètres de nucléation et croissance contrôlant les différentes textures minérales observées. Pour développer le modèle de nucléation et de croissance, il est nécessaire de connaître le chemin température - temps des échantillons. L'histoire thermique est complexe parce que l'intrusion est produite par plusieurs injections successives. En effet, le mécanisme d'emplace¬ment et la durée de chaque injection peuvent influencer la structure thermique dans l'auréole. Une subdivision des injections en plus petits incréments, appelés puises, permet de concentrer la chaleur dans les bords de l'intrusion. Une mise en place préférentielle de ces puises sur un côté de l'intrusion modifie l'apport thermique et influence la taille de l'auréole de contact produite, auréole qui devient asymétrique. Dans le cas de la première injection de granite, une modélisation détaillée montre que l'épaisseur relative de l'auréole de contact de Torres del Paine au-dessus et en dessous de l'intrusion (150 et 400 m) est mieux expliquée par un emplacement rapide du granite. Néanmoins, les températures calculées dans l'auréole de con¬tact sont trop basses pour que les modèles thermiques soient cohérants par rapport à la taille de cette auréole. Ainsi, un autre mecanisme exothermique est nécessaire pour permettre à la roche encais¬sante de produire les assemblages observés. L'observation des roches encaissantes entourant les granites montre que les minéraux clastiques dans les sédiments immatures au-dehors de l'auréole sont hydratés suite à la petite quantité de fluide expulsée durant le métamorphisme de contact et/ou la mise en place des granites. Les réactions d'hydratation peuvent permettre une augmentation de la température jusqu'à 50 °C. Afin de déterminer l'origine des fluides, une étude isotopique de roches de l'auréole de contact a été entreprise. Les isotopes stables d'oxygène et d'hydrogène sur la roche totale ainsi que la concentration en chlore dans la biotite indiquent que la mise en place des granites du Torres del Paine n'induit qu'une circulation de fluide limitée. Les données d'oxygène sur roche totale montrent des valeurs δ180 entre 9.0 et 10.0%o au sein des cinq premiers mètres du contact. Les valeurs augmentent jusqu'à 13.0 - 15.0 plus on s'éloigne de l'intrusion. Les valeurs 5D sur roche totale montrent une zonation plus complexe. Les valeurs de la roche encaissante (-90 à -70%o) diminuent progressivement d'environ 20%o depuis l'extérieur de l'auréole jusqu'à une distance d'environ 150 m du granite. Cette diminution est suivie par une augmentation d'environ 20%o au sein des 150 mètres les plus proches du contact (-97.0 à -78%o au contact). La diminution initiale des valeurs de 6D est interprétée comme la conséquence du fractionnement de Rayleigh qui accompagne les réactions de déshydratation formant la cordiérite, alors que l'augmentation finale reflète l'infiltration de fluide riche en eau venant de l'intrusion. A partir de ces résultats, le volume du fluide issu du granite ainsi que son effet thermique a pu être estimé. Ces résultats montrent que l'augmentation de température associée à ces fluides est limitée à un maximum de 30 °C. La contribution de ces fluides dans le bilan thermique est donc faible. Ces différents résultats nous ont permis de créer un modèle thermique associé à la for¬mation de l'auréole de contact qui intègre la mise en place rapide du granite et les réactions d'hydratation lors du métamorphisme. L'intégration de ce modèle thermique dans le modèle numérique de croissance minérale nous permet de calculer les textures des cordiérites. Cepen¬dant, ce modèle est dépendant de la vitesse de croissance et de nucléation de ces cordiérites. Nous avons obtenu ces paramètres en comparant les textures prédites par le modèle et les textures observées dans les roches de l'auréole de contact du Torres del Paine. Les paramètres cinétiques extraits du modèle optimisé indiquent une cristallisation rapide de la cordiérite avant le pic thermique dans la partie interne de l'auréole, et une réaction continue après le pic thermique dans la partie la plus externe de l'auréole. Seules de petites dépendances de température des paramètres de cinétique semblent être nécessaires pour expliquer les don¬nées obtenues sur la distribution des tailles de cristaux. Ces résultats apportent un éclairage nouveau sur la cinétique qui contrôle les réactions métamorphiques.
Resumo:
Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.
Resumo:
This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.
Resumo:
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.
Resumo:
The uncertainties inherent to experimental differential scanning calorimetric data are evaluated. A new procedure is developed to perform the kinetic analysis of continuous heating calorimetric data when the heat capacity of the sample changes during the crystallization. The accuracy of isothermal calorimetric data is analyzed in terms of the peak-to-peak noise of the calorimetric signal and base line drift typical of differential scanning calorimetry equipment. Their influence in the evaluation of the kinetic parameters is discussed. An empirical construction of the time-temperature and temperature heating rate transformation diagrams, grounded on the kinetic parameters, is presented. The method is applied to the kinetic study of the primary crystallization of Te in an amorphous alloy of nominal composition Ga20Te80, obtained by rapid solidification.
Resumo:
Bone marrow hematopoietic stem cells (HSCs) are responsible for both lifelong daily maintenance of all blood cells and for repair after cell loss. Until recently the cellular mechanisms by which HSCs accomplish these two very different tasks remained an open question. Biological evidence has now been found for the existence of two related mouse HSC populations. First, a dormant HSC (d-HSC) population which harbors the highest self-renewal potential of all blood cells but is only induced into active self-renewal in response to hematopoietic stress. And second, an active HSC (a-HSC) subset that by and large produces the progenitors and mature cells required for maintenance of day-to-day hematopoiesis. Here we present computational analyses further supporting the d-HSC concept through extensive modeling of experimental DNA label-retaining cell (LRC) data. Our conclusion that the presence of a slowly dividing subpopulation of HSCs is the most likely explanation (amongst the various possible causes including stochastic cellular variation) of the observed long term Bromodeoxyuridine (BrdU) retention, is confirmed by the deterministic and stochastic models presented here. Moreover, modeling both HSC BrdU uptake and dilution in three stages and careful treatment of the BrdU detection sensitivity permitted improved estimates of HSC turnover rates. This analysis predicts that d-HSCs cycle about once every 149-193 days and a-HSCs about once every 28-36 days. We further predict that, using LRC assays, a 75%-92.5% purification of d-HSCs can be achieved after 59-130 days of chase. Interestingly, the d-HSC proportion is now estimated to be around 30-45% of total HSCs - more than twice that of our previous estimate.
Resumo:
Six healthy human subjects were studied during three 75-g oral, [13C]glucose tolerance tests to assess the kinetics of dexamethasone-induced impairment of glucose tolerance. On one occasion, they received dexamethasone (4 x 0.5 mg/day) during the previous 2 days. On another occasion, they received a single dose (0. 5 mg) of dexamethasone 150 min before ingestion of the glucose load. On the third occasion, they received a placebo. Postload plasma glucose was significantly increased after both 2 days dexamethasone and single dose dexamethasone compared with control (P < 0.05). This corresponded to a 20-23% decrease in the metabolic clearance rate of glucose, whereas total glucose turnover ([6,6-2H]glucose), total (indirect calorimetry) and exogenous glucose oxidation (13CO2 production), and suppression of endogenous glucose production were unaffected by dexamethasone. Plasma insulin concentrations were increased after 2 days of dexamethasone but not after a single dose of dexamethasone. In a second set of experiments, the effect of a single dose of dexamethasone on insulin sensitivity was assessed in six healthy humans during a 2-h euglycemic hyperinsulinemic clamp. Dexamethasone did not significantly alter insulin sensitivity. It is concluded that acute administration of dexamethasone impairs oral glucose tolerance without significantly decreasing insulin sensitivity.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.