995 resultados para Kinetic modelling
Resumo:
Urban solid residues are constituted of food remaining, grass leaves, fruit peelings, paper, cardboard, rubber, plastic, etc. The organic fraction formed represents about 50% during the decomposition yields biogas and leachate, which are sources of pollution. Residue samples were collected from the landfill in different and cells from several ages and the corresponding leachate, both after treatments, were submitted to thermal analysis. Kinetic parameters were determined using Flynn-Wall-Ozawa method. The linear relation between the two kinetic parameters (ln A and E) was verified for organic residue urban`s samples, but not for leachate`s sample. The occurred difference can be attributed to the constituents present in leachate.
Resumo:
Ecological niche modelling combines species occurrence points with environmental raster layers in order to obtain models for describing the probabilistic distribution of species. The process to generate an ecological niche model is complex. It requires dealing with a large amount of data, use of different software packages for data conversion, for model generation and for different types of processing and analyses, among other functionalities. A software platform that integrates all requirements under a single and seamless interface would be very helpful for users. Furthermore, since biodiversity modelling is constantly evolving, new requirements are constantly being added in terms of functions, algorithms and data formats. This evolution must be accompanied by any software intended to be used in this area. In this scenario, a Service-Oriented Architecture (SOA) is an appropriate choice for designing such systems. According to SOA best practices and methodologies, the design of a reference business process must be performed prior to the architecture definition. The purpose is to understand the complexities of the process (business process in this context refers to the ecological niche modelling problem) and to design an architecture able to offer a comprehensive solution, called a reference architecture, that can be further detailed when implementing specific systems. This paper presents a reference business process for ecological niche modelling, as part of a major work focused on the definition of a reference architecture based on SOA concepts that will be used to evolve the openModeller software package for species modelling. The basic steps that are performed while developing a model are described, highlighting important aspects, based on the knowledge of modelling experts. In order to illustrate the steps defined for the process, an experiment was developed, modelling the distribution of Ouratea spectabilis (Mart.) Engl. (Ochnaceae) using openModeller. As a consequence of the knowledge gained with this work, many desirable improvements on the modelling software packages have been identified and are presented. Also, a discussion on the potential for large-scale experimentation in ecological niche modelling is provided, highlighting opportunities for research. The results obtained are very important for those involved in the development of modelling tools and systems, for requirement analysis and to provide insight on new features and trends for this category of systems. They can also be very helpful for beginners in modelling research, who can use the process and the experiment example as a guide to this complex activity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The greenhouse effect and resulting increase in the Earth`s temperature may accelerate the mean sea-level rise. The natural response of bays and estuaries to this rise, such as this case study of Santos Bay (Brazil), will include change in shoreline position, land flooding and wetlands impacts. The main impacts of this scenario were studied in a physical model built in the Coastal and Harbour Division of Hydraulic Laboratory, University of Sao Paulo, and the main conclusions are presented in this paper. The model reproduces near 1,000 km(2) of the study area, including Santos, Sao Vicente, Praia Grande, Cubatao, Guaruja and Bertioga cities.
Resumo:
A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.
Resumo:
The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermodynamic assessment of an Al(2)O(3)-MnO pseudo-binary system has been carried out with the use of an ionic model. The use of the electro-neutrality principles in addition to the constitutive relations, between site fractions of the species on each sub-lattice, the thermodynamics descriptions of each solid phase has been determined to make possible the solubility description. Based on the thermodynamics descriptions of each phase in addition to thermo-chemical data obtained from the literature, the Gibbs energy functions were optimized for each phase of the Al(2)O(3)-MnO system with the support of PARROT(R) module from ThemoCalc(R) package. A thermodynamic database was obtained, in agreement with the thermo-chemical data extracted from the literature, to describe the Al(2)O(3)-MnO system including the solubility description of solid phases. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We give reasons why demographic parameters such as survival and reproduction rates are often modelled well in stochastic population simulation using beta distributions. In practice, it is frequently expected that these parameters will be correlated, for example with survival rates for all age classes tending to be high or low in the same year. We therefore discuss a method for producing correlated beta random variables by transforming correlated normal random variables, and show how it can be applied in practice by means of a simple example. We also note how the same approach can be used to produce correlated uniform triangular, and exponential random variables. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed.
Resumo:
This article considers alternative methods to calculate the fair premium rate of crop insurance contracts based on county yields. The premium rate was calculated using parametric and nonparametric approaches to estimate the conditional agricultural yield density. These methods were applied to a data set of county yield provided by the Statistical and Geography Brazilian Institute (IBGE), for the period of 1990 through 2002, for soybean, corn and wheat, in the State of Paran. In this article, we propose methodological alternatives to pricing crop insurance contracts resulting in more accurate premium rates in a situation of limited data.
Resumo:
The combined effect of temperature (15A degrees C, 20A degrees C, 25A degrees C, 30A degrees C, 35A degrees C, 40A degrees C and 42A degrees C) and leaf wetness duration (0, 4, 8 12, 16, 20 and 24 h) on infection and development of Asiatic citrus canker (Xanthomonas citri subsp. citri) on Tahiti lime plant was examined in growth chambers. No disease developed at 42A degrees C and zero hours of leaf wetness. Periods of leaf wetness as short as 4 h were sufficient for citrus canker infection. However, a longer leaf duration wetness (24 h) did not result in much increase in the incidence of citrus canker, but led to twice the number of lesions and four times the disease severity. Temperature was the greatest factor influencing disease development. At optimum temperatures (25-35A degrees C), there was 100% disease incidence. Maximum disease development was observed at 30-35A degrees C, with up to a 12-fold increase in lesion density, a 10-fold increase in lesion size and a 60-fold increase in disease severity.
Resumo:
Semicontinuous cultures were carried out at different dilution rates (D) and light intensities (I) to determine the maximum productivity of Arthrospira platensis cultivated in helicoidal photobioreactor up to the achievement of pseudo-steady-state conditions. At I = 108 mu mol photons m(-2) s(-1), the semicontinuous regime ensured the highest values of maximum cell concentration (X(m) = 5772 +/- 113 mg L(-1)) and productivity (P(XS) = 1319 +/- 25 mg L(-1) d(-1)) at the lowest (D = 0.1 day(-1)) and the highest (D = 0.3 day(-1)) dilution rates, respectively. A kinetic model derived from that of Monod was proposed to determine the relationship between the product of light intensity to dilution rate (ID) and the cell productivity, which were shown to exert a combined influence on this parameter. This result put into evidence that pseudosteady-state conditions could be modified according to circumstances, conveniently varying one or other of the two independent variables. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Clavulanic acid (CA) is a potent inhibitor of beta-lactamases, produced by some resistant pathogenic microorganisms, which allows efficient treatment of infectious diseases. The kinetic and thermodynamic parameters of CA production by a new isolate of Streptomyces DAUFPE 3060 and its degradation were evaluated. The effect of temperature on the system was investigated in the range 24-40 degrees C adopting an overall model accounting for (a) the Arrhenius-type formation of CA by fermentation, (b) the hypothetical reversible unfolding of the enzyme limiting the overall metabolism, and (c) the irreversible first-order degradation of CA. The higher rates of CA formation (k(CA) = 0,107 h(-1)) and degradation (k(d) = 0.062 h(-1)) were observed at 32 and 40 degrees C, respectively. The main thermodynamic parameters of the three above hypothesized events were estimated. In particular, the activation parameters of degradation (activation energy = 39.0 kJ/mol; Delta H(d)* = 36.5 kJ/mol; Delta S(d)* = -219.7 J/(mol K); Delta G(d)* = 103.5 kJ/mol) compare reasonably well with those reported in the literature for similar system without taking into account the other two events. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rosiglitazone (RSG), a thiazolidinedione antidiabetic drug, is metabolized by CYP450 enzymes into two main metabolites: N-desmethyl rosiglitazone (N-Dm-R) and rho-hydroxy rosiglitazone (rho-OH-R). In humans, CYP2C8 appears to have a major role in RSG metabolism. On the other hand, the in vitro metabolism of RSG in animals has not been described in literature yet. Based on these concerns, the kinetic metabolism study of RSG using rat liver microsomal fraction is described for the first time. Maximum velocity (V (max)) values of 87.29 and 51.09 nmol/min/mg protein were observed for N-Dm-R and rho-OH-R, respectively. Michaelis-Menten constant (K (m)) values were of 58.12 and 78.52 mu M for N-Dm-R and rho-OH-R, respectively. Therefore, these results demonstrated that this in vitro metabolism model presents the capacity of forming higher levels of N-Dm-R than of rho-OH-R, which also happens in humans. Three other metabolites were identified employing mass spectrometry detection under positive electrospray ionization: ortho-hydroxy-rosiglitazone (omicron-OH-R) and two isomers of N-desmethyl hydroxy-rosiglitazone. These metabolites have also been observed in humans. The results observed in this study indicate that rats could be a satisfactory model for RSG metabolism.
Resumo:
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng.h.mL(-1); p <= 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng.h.mL(-1); p <= 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.