962 resultados para Kinesin -- Molecular aspects


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cortisol availability is controlled by 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which inactivates cortisol in cortisone, unable to bind to the glucocorticoid receptor. The 11beta-HSD2 enzyme activity limits either intracellular cortisol concentrations or within the uteroplacental compartment the transfer of cortisol into the fetal circulation. Mechanisms, by which 11beta-HSD2 activity is controlled, include transcriptional control, posttranscriptional modifications of 11beta-HSD2 transcript half-life, epigenetic regulation via methylation of genomic DNA and direct inhibition of enzymatic activity. The 11beta-HSD2 expression and activity is reduced in preeclampsia and the enzyme activity correlates with factors associated with increased vasoconstriction, such as an increased angiotensin II receptor subtype 1 expression, and notably fetal growth. Numerous signals such as proinflammatory cytokines known to be present and/or elevated in preeclampsia regulate 11beta-HSD2 activity. Shallow trophoblast invasion with the resulting hypoxemia seems to critically reduce available 11beta-HSD2 activity. A positive feedback exists as activated glucocorticoid receptors do enhance 11beta-HSD2 mRNA transcription and mRNA stability. No data are currently available on pregnancy and either epigenetic or direct effects on the activity of the translated enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preeclampsia is a hypertensive disorder unique to pregnancy and remains the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiology of this disease remains still an enigma. There is increasing evidence that a combination of several factors is responsible for the development of preeclampsia. In this review, we discuss the role of aldosterone in the regulation of body fluid in pregnancy and preeclampsia. Aldosterone is produced by the enzyme aldosterone synthase and competes with cortisol and progesterone for the mineralocorticoid receptor, thus affecting sodium reabsorption and maternal volume expansion. Aldosterone seems to play a pivotal role in controlling blood pressure during pregnancy and to contribute to the well-being of the mother-to-be. Novel findings in understanding the underlying causes of preeclampsia provide a rationale for future novel prophylactic and therapeutic interventions in the treatment of this pregnancy-associated disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (alpha,beta, gamma, delta) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (gammaT-enriched) tocopherols seems to be more potent than supplementation with alphaT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with alphaT only and thus warrants further investigation.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter provides an overview on the DNA based phylogeny of the family Pasteurellaceae and the genetic relatedness between taxa taking into account the various gene targets and approaches applied in the literature. The classical 16S rRNA gene based phylogeny as well as phylogenies based on house-keeping genes are described. Moreover, strength and weakness of the different trees and their topology are discussed based on the phylogenetic groups resolved. The data should help to get a clearer picture on the recent, current and future classification and also provide information to genetic characterization of members of the family. The history of phylogeny applied to the family as well as the phylogenetic history of the family is thereby presented. In this way it is the story of the search for the optimal phylogenetic marker without giving a final conclusive suggestion but it is also a resource for choosing the appropriate gene target(s) for people investigating the phylogeny of groups of Pasteurellaceae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostate cancer is a major health concern as it has the second highest incidence rate among cancers in men. Despite progress in tumor diagnostics and therapeutic approaches, prognosis for men with advanced disease remains poor. In this review we provide insight into the changes of the intermediary metabolism in normal prostate and prostate cancer. In contrast to normal cells, prostate cancer cells are reprogrammed for optimal energy-efficiency with a functional Krebs cycle and minimal apoptosis rates. A key element in this relationship is the uniquely high zinc level of normal prostate epithelial cells. Zinc is transported by the SLC30 and SLC39 families of zinc transporters. However, in prostate cancer the intracellular zinc content is remarkably reduced and expression levels of certain zinc transporters are altered. Here, we summarize the role of different zinc transporters in the development of prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During tumor progression cells acquire an altered metabolism, either as a cause or as a consequence of an increased need of energy and nutrients. All four major classes of macromolecules are affected: carbohydrates, proteins, lipids and nucleic acids. As a result of the changed needs, solute carriers (SLCs) which are the major transporters of these molecules are differently expressed. This renders them important targets in the treatment of cancer. Blocking or activating SLCs is one possible therapeutic strategy. For example, some SLCs are upregulated in tumor cells due to the increased demand for energy and nutritional needs. Thus, blocking them and turning off the delivery of fuel or nutrients could be one way to interfere with tumor progression. Specific drug delivery to cancer cells via transporters is another approach. Some SLCs are also interesting as chemosensitizing targets because blocking or activating them may result in an altered response to chemotherapy. In this review we summarize the roles of SLCs in cancer therapy and specifically their potential as direct or indirect targets, as drug carriers or as chemosensitizing targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SLC13 family comprises five genes (SLC13A1, SLC13A2, SLC13A3, SLC13A4, and SLC13A5) encoding structurally related multi-spanning transporters (8-13 transmembrane domains) with orthologues found in prokaryotes and eukaryotes. Mammalian SLC13 members mediate the electrogenic Na(+)-coupled anion cotransport at the plasma membrane of epithelial cells (mainly kidney, small intestine, placenta and liver) or cells of the central nervous system. While the two SLC13 cotransporters NaS1 (SLC13A1) and NaS2 (SLC13A4) transport anions such sulfate, selenate and thiosulfate, the three other SLC13 members, NaDC1 (SLC13A2), NaCT (SLC13A5) and NaDC3 (SLC13A3), transport di- and tri-carboxylate Krebs cycle intermediates such as succinate, citrate and α-ketoglutarate. All these transporters play a variety of physiological and pathophysiological roles in the different organs. Thus, the purpose of this review is to summarize the roles of SLC13 members in human physiology and pathophysiology and what the therapeutic perspectives are. We have also described the most recent advances on the structure, expression, function and regulation of SLC13 transporters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and "non-SLC" transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.