978 resultados para Kinase régulée par signal extracellulaire


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: L'arthrose est caractérisée par une destruction progressive du cartilage, une inflammation synoviale, et un remodelage de l’os sous-chondral avec une production excessive des médiateurs inflammatoires et cataboliques. Nous avons démontré que le niveau du 4-hydroxynonénal (4-HNE), un produit de la peroxydation lipidique, est augmenté dans le cartilage humain arthrosique sans qu’on sache le mécanisme exacte impliqué dans l’augmentation de cette molécule. Des données de la littérature indiquent que l’accumulation du HNE est contrôlée par l’action de la glutathione S-transférase A4-4 (GSTA4-4), une enzyme impliquée dans la détoxification du HNE. Au niveau transcriptionel, l’expression de cette enzyme est régulée par la transactivation du facteur de transcription Nrf2. Objectif: L’objectif de cette étude vise à démontrer que l’augmentation du HNE dans le cartilage arthrosique est attribuée, en partie, à l’altération de l’expression de la GSTA4-4 et de Nrf2. Méthode: Le niveau d’expression de la GSTA4-4 et de Nrf2 a été mesurée par Western blot et par PCR en temps réel dans le cartilage humain arthrosique et dans le cartilage provenant des souris atteintes d’arthrose. Pour démontrer le rôle du Nrf2 dans l’arthrose, les chondrocytes humains arthrosiques ont été traités par l’interleukine 1beta (IL-1β) ou par le H2O2 en présence ou en absence des activateurs du Nrf2 tels que le Protandim®, AI, et du 6-Gingérol. Par ailleurs, les chondrocytes ont été transfectés par un vecteur d’expression de Nrf2 puis traités par l’IL-β. En utilisant le modèle d’arthrose chez la souris, les animaux ont été traités par voie orale de 10 mg/kg/jour de Protandim® pendant 8 semaines. Résultats: Nous avons observé une diminution significative de l’expression de la GSTA4-4 et de Nrf2 dans le cartilage humain et murin arthrosique. L'activation de Nrf2 bloque la stimulation de la métalloprotéinase-13 (MMP-13), la prostaglandine E2 (PGE2) et de l'oxyde nitrique (NO) par l’IL-1β. En outre, nous avons montré que l'activation Nrf2 protège les cellules contre la mort cellulaire induite par H2O2. Fait intéressant, l'administration orale de Protandim® réduit la production du HNE par l'intermédiaire de l’activation de la GSTA4. Nous avons démontré que le niveau d’expression de la GSTA4-4 et de Nrf2 diminue dans le cartilage provenant des patients et des souris atteints d’arthrose. De plus, la surexpression de ce facteur nucléaire Nrf2 empêche la production du HNE et la MMP-13 et l’inactivation de la GSTA4-4. Dans notre modèle expérimental d’arthrose induite par déstabilisation du ménisque médial chez la souris, nous avons trouvé que l'administration orale de Protandim® à 10 mg / kg / jour réduit les lésions du cartilage. Conclusion: Cette étude est de la première pour démontrer le rôle physiopathologique du Nrf2 in vitro et in vivo. Nos résultats démontrent que l’activation du Nrf2 est essentielle afin de maintenir l’expression de la GSTA4-4 et de réduire le niveau du HNE. Le fait que les activateurs du Nrf2 abolissent la production de la HNE et aussi un certain nombre de facteurs connus pour être impliqués dans la pathogenèse de l’arthrose les rend des agents cliniquement utiles pour la prévention de la maladie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’hypertension essentielle étant un facteur majeur de morbidité, la compréhension de son l’étiologie est prépondérante. Ainsi, la découverte de nouvelles composantes ou mécanismes de régulation de la PA par l’identification de QTL et l’étude de leurs interactions s’avère une approche prometteuse. L’utilisation de souches congéniques de rats pour l’étude de l’hypertension est une stratégie payante puisqu’elle permet de masquer les effets de l’environnement, tout en gardant le caractère polygénique de la PA. Longtemps conçu comme un trait issu de l’accumulation des effets minimes des QTL, la PA est régulée par une architecture basée sur l’existence d’interactions épistatiques. L’analyse par paires de QTL individuels a permis d’établir une modularité dans l’organisation des QTL chez le rat Dahl Salt-sensitive en fonction de la présence ou de l’absence d’une interaction épistatique entre eux. Ainsi, deux modules épistatiques ont été établis; EM1 et EM2 où tous les QTL appartenant à EM1 sont épistatiques entre eux et agissent de façon additive avec les membres de EM2. Des hiérarchies dans la régulation peuvent alors être révélées si les QTL d’un même EM ont des effets opposés. L’identification de la nature moléculaire des candidats C18QTL4/Hdhd2 et C18QTL3/Tcof1, membres du EM1, et de l’interaction épistatique entre ces deux QTL, a permis, en plus, d’élucider une régulation séquentielle au sein du module. Hdhd2 pourrait agir en amont de Tcof1 et réguler ce dernier par une modification post-traductionnelle. Cette interaction est la première évidence expérimentale de la prédiction des relations entre QTL, phénomène établi par leur modularisation. Le dévoilement du fonctionnement de l’architecture génétique à la base du contrôle de la PA et la découverte des gènes responsables des QTL permettrait d’élargir les cibles thérapeutiques et donc de développer des traitements antihypertenseurs plus efficaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms.

Results
Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components.

Conclusion
Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human GH has two disulfide bridges linking Cys-53 to Cys-165 and Cys-182 to Cys-189. Although absence of the first disulfide bridge has been shown to affect the bioactivity of GH in transgenic mice, little is known of the importance of this bridge in mediating the GH/GH-receptor (GHR) interaction in humans. However, we have identified a missense mutation (G705C) in the GH1 gene of a Serbian patient. This mutation was found in the homozygous state and leads to the absence of the disulfide bridge Cys-53 to Cys-165. To study the impact of this mutation in vitro, GHR binding and Janus kinase (Jak)2/signal transducer and activator of transcription (Stat)5 activation experiments were performed, in which it was observed that at physiological concentrations (3-50 ng/ml) both GHR binding and Jak2/Stat5 signaling pathway activation were significantly reduced in the mutant GH-C53S, compared with wild-type (wt)-GH. Higher concentrations (400 ng/ml) were required for this mutant to elicit responses similar to wt-GH. These results demonstrate that the absence of the disulfide bridge Cys-53 to Cys-165 affects the binding affinity of GH for the GHR and subsequently the potency of GH to activate the Jak2/Stat5 signaling pathway. In conclusion, we have demonstrated that GH-C53S is a bioinactive GH at the physiological range and that the disulfide bridge Cys-53 to Cys-163 is required for mediating the biological effects of GH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the α1 and α2 helices (Δloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Δloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K→R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH receptor (GHR) mediates metabolic and somatogenic actions of GH. Its extracellular domain (ECD; residues 1-246) has two subdomains, each with seven beta strands organized into two antiparallel beta sheets, connected by a short hinge region. Most of the ECD residues involved in GH binding reside in subdomain 1, whereas subdomain 2 harbors a dimerization interface between GHR dimers that alters conformation in response to GH. A regulated GHR metalloprotease cleavage site is in the membrane-proximal stem region of subdomain 2. We have identified a monoclonal anti-ECD antibody, anti-GHR(ext-mAb), which recognizes the rabbit and human GHRs by immunoprecipitation, but less so after GH treatment. By immunoblotting and immunoprecipitation, anti-GHR(ext-mAb) recognized a glutathione-S-transferase (GST) fusion incorporating subdomain 2, but not one including subdomain 1. In transient transfection experiments, anti-GHR(ext-mAb) failed to recognize by immunoprecipitation a previously characterized dimerization interface mutant GHR that is incompetent for signaling. In signaling experiments, brief pretreatment of GH-responsive human fibrosarcoma cells with anti-GHR(ext-mAb) dramatically inhibited GH-induced Janus kinase 2 and signal transducer and activator of transcription 5 tyrosine phosphorylation and prevented GH-induced GHR disulfide linkage (a reflection of GH-induced conformational changes). In contrast, anti-GHR(ext-mAb) only partially inhibited radiolabeled GH binding, suggesting its effects on signaling were not simply via inhibition of binding. Furthermore, anti-GHR(ext-mAb) prevented phorbol ester-stimulated GHR proteolysis, but GHR cleavage site mutants were normally recognized by the antibody, indicating that the stem region cleavage site is not a direct epitope. A Fab fragment of anti-GHR(ext-mAb) inhibited GH-induced GHR disulfide linkage and signaling, as well as phorbol ester-induced GHR proteolysis, in a fashion similar to the intact antibody. Thus, our findings suggest that anti-GHR(ext-mAb) has promise as a GH antagonist and as a tool in studies of conformational changes required for GHR activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.