610 resultados para Kilns, Rotary.
Resumo:
Good afternoon. It's a pleasure to be with you here in Plattsmouth today, and I am particularly pleased to be part of your Farmer's Day program. Because I am so new to Nebraska and the University of Nebraska Institute of Agriculture and Natural Resources, I am trying to learn as much as I can about how the Institute connects with the state, annd how you feel we can be an even better partner with Nebraska. I'm curious about our work in each Nebraska county, and because I was coming to Cass County today, I asked those I work with for some figures on how the Institute is part of the lives of Cass Countians.
Resumo:
Product miniaturization for applications in fields such as biotechnology, medical devices, aerospace, optics and communications has made the advancement of micromachining techniques essential. Machining of hard and brittle materials such as ceramics, glass and silicon is a formidable task. Rotary ultrasonic machining (RUM) is capable of machining these materials. RUM is a hybrid machining process which combines the mechanism of material removal of conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale machining is essential to generate miniature features or parts from hard and brittle materials. The goal of this thesis is to conduct a feasibility study and to develop a knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the feasibility study led to a comprehensive investigation on the effect of process parameters. The effect of spindle speed, grit size, vibration amplitude, tool geometry, static load and coolant on the material removal rate (MRR) of MRUM was studied. In general, MRR was found to increase with increase in spindle speed, vibration amplitude and static load. MRR was also noted to depend upon the abrasive grit size and tool geometry. The behavior of the cutting forces was modeled using time series analysis. Being a vibration assisted machining process, heat generation in MRUM is low which is essential for bone machining. Capability of MRUM process for machining bone tissue was investigated. Finally, to estimate the MRR a predictive model was proposed. The experimental and the theoretical results exhibited a matching trend.
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
Root canal preparation may damage NiTi instruments resulting in wear and deformation. The aim of this study was to make a comparative evaluation of the surface topography of the cervical third of four different rotary systems, before and after being used twelve times, in 1.440 resin blocks with simulated root canals with standardized 45 degrees curvatures, and analyzed by atomic force microscopy AFM. The blocks were divided into four groups and prepared according to the manufacturers recommendations: Group 1 - K3 (R); Group 2 - Protaper Universal (R); Group 3 - Twisted Files (R) and Group 4 - Biorace (R). After each preparation, the instruments were washed and autoclaved. A total of 240 instruments were selected, being 30 new instruments and 30 after having been used for the 12th time, from each group. These instruments were analyzed by AFM and for quantitative evaluation, the mean RMS (Root mean square) values of the cervical third of the specimens from the four groups were used. The result showed that all the rotary files used for the 12th time suffered wear with change in the topography of the cervical region of the active portion of the file (ANOVA p < 0.01). Classifying the specimens in increasing order, from the least to the greatest wear suffered, Group 3 (2.8993 nm) presented the least wear, followed by Group 4 (12.2520 nm), Group 1 (36.0043 nm) and lastly, Group 2 (59.8750 nm) with the largest amount of cervical surface wear. Microsc. Res. Tech. 75:97-102, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, Pro Taper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the Pro Taper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1. - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the Pro Taper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (x1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
Objective: This study assessed the muscular activity during root canal preparation through kinematics, kinetics, and electromyography (EMG). Material and Methods: The operators prepared one canal with RaCe rotary instruments and another with Flexofiles. The kinematics of the major joints was reconstructed using an optoelectronic system and electromyographic responses of the flexor carpi radial's, extensor carpi radialis, brachioradialis, biceps brachii, triceps brachii, middle deltoid, and upper trapezius were recorded. The joint torques of the shoulder, elbow and wrist were calculated using inverse dynamics. In the kinematic analysis, angular movements of the wrist and elbow were classified as low risk factors for work-related musculoskeletal disorders. With respect to the shoulder, the classification was medium-risk. Results: There was no significant difference revealed by the kinetic reports. The EMG results showed that for the middle deltoid and upper trapezius the rotary instrumentation elicited higher values. The flexor carpi radialis and extensor carpi radialis, as well as the brachioradialis showed a higher value with the manual method. Conclusion: The muscular recruitment for accomplishment of articular movements for root canal preparation with either the rotary or manual techniques is distinct. Nevertheless, the rotary instrument presented less difficulty in the generation of the joint torque in each articulation, thus, presenting a greater uniformity of joint torques.
Resumo:
Introduction: The aim of this study was to assess the effect of nitrogen ion implantation on the flexibility of rotary nickel-titanium (NiTi) instruments as measured by the load required to bend implanted and nonimplanted instruments at a 30 degrees angle. Methods: Thirty K3 files, size #40, 0.02 taper and 25-mm length, were allocated into 2 groups as follows: group A, 15 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), voltage 200 KeV, current density 1 mu A/cm(2), temperature 130 degrees C, and vacuum conditions of 10 x 10(-6) mm Hg for 6 hours; and group B, 15 nonimplanted files. One extra file was used for process control. All instruments were subjected to bend testing on a modified troptometer, with measurement of the load required for flexure to an angle of 30 degrees. The Mann-Whitney U test was used for statistical analysis. Findings with P <.05 were considered significant. Results: The mean load required to bend instruments at a 30 degrees angle was 376.26 g for implanted instruments and 383.78 g for nonimplanted instruments. The difference was not statistically significant. Conclusions: Our findings show that nitrogen ion implantation has no appreciable effect on the flexibility of NiTi instruments. (J Endod 2012;38:673-675)
Resumo:
In this work a generally applicable method for the preparation of mucoadhesive micropellets of 250 to 600µm diameter is presented using rotor processing without the use of electrolytes. The mucoadhesive micropellets were developed to combine the advantages of mucoadhesion and microparticles. It was possible to produce mucoadhesive micropellets based on different mucoadhesive polymers Na-CMC, Na-alginate and chitosan. These micropellets are characterized by a lower friability (6 to 17%) when compared to industrial produced cellulose pellets (Cellets®) (41.5%). They show great tapped density and can be manufactured at high yields. The most influencing variables of the process are the water content at the of the end spraying period, determined by the liquid binder amount, the spraying rate, the inlet air temperature, the airflow and the humidity of the inlet air and the addition of the liquid binder, determined by the spraying rate, the rotor speed and the type of rotor disc. In a subsequent step a fluidized bed coating process was developed. It was possible to manifest a stable process in the Hüttlin Mycrolab® in contrast to the Mini-Glatt® apparatus. To reach enteric resistance, a 70% coating for Na-CMC micropellets, an 85% for chitosan micropellets and a 140% for Na-alginate micropellets, based on the amount of the starting micropellets, was necessary. Comparative dissolution experiments of the mucoadhesive micropellets were performed using the paddle apparatus with and without a sieve inlay, the basket apparatus, the reciprocating cylinder and flow-through cell. The paddle apparatus and the modified flow-through cell method turned out to be successful methods for the dissolution of mucoadhesive micropellets. All dissolution profiles showed an initial burst release followed by a slow release due to diffusion control. Depending on the method, the dissolution profiles changed from immediate release to slow release. The dissolution rate in the paddle apparatus was mainly influenced by the agitation rate whereas the flow-through cell pattern was mainly influenced by the particle size. Also, the logP and the HLB values of different emulsifiers were correlated to transfer HLB values of excipients into logP values and logP values of API´s into HLB values. These experiments did not show promising results. Finally, it was shown that manufacture of mucoadhesive micropellets is successful resulting in product being characterized by enteric resistency combined with high yields and convincing morphology.
Resumo:
Costruzione di un modello numerico base per la simulazione del processo Rotary Friction Welding.
Resumo:
In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.