182 resultados para Kale leafworm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with and details the design and implementation of a low-power; hardware-efficient adaptive self-calibrating image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Hybrid strength-reduced and re-scheduled data-flow, low-power implementation of the adaptive self-calibration algorithm is developed and its efficiency is demonstrated through simulation case studies. A behavioral and structural model is developed in Matlab as well as a low-level architectural design in VHDL providing valuable test benches for the performance measures undertaken on the detailed algorithms and structures.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes in detail the design of a CMOS custom fast Fourier transform (FFT) processor for computing a 256-point complex FFT. The FFT is well-suited for real-time spectrum analysis in instrumentation and measurement applications. The FFT butterfly processor reported here consists of one parallel-parallel multiplier and two adders. It is capable of computing one butterfly computation every 100 ns thus it can compute a 256-point complex FFT in 102.4 μs excluding data input and output processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes in detail the design of a custom CMOS Fast Fourier Transform (FFT) processor for computing 256-point complex FFT. The FFT is well suited for real-time spectrum analysis in instrumentation and measurement applications. The FFT butterfly processor consists of one parallel-parallel multiplier and two adders. It is capable of computing one butterfly computation every 100 ns thus it can compute 256-complex point FFT in 25.6 μs excluding data input and output processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple but effective technique to improve the performance of the Max-Log-MAP algorithm is to scale the extrinsic information exchanged between two MAP decoders. A comprehensive analysis of the selection of the scaling factors according to channel conditions and decoding iterations is presented in this paper. Choosing a constant scaling factor for all SNRs and iterations is compared with the best scaling factor selection for changing channel conditions and decoding iterations. It is observed that a constant scaling factor for all channel conditions and decoding iterations is the best solution and provides a 0.2-0.4 dB gain over the standard Max- Log-MAP algorithm. Therefore, a constant scaling factor should be chosen for the best compromise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UMTS turbo encoder is composed of parallel concatenation of two Recursive Systematic Convolutional (RSC) encoders which start and end at a known state. This trellis termination directly affects the performance of turbo codes. This paper presents performance analysis of multi-point trellis termination of turbo codes which is to terminate RSC encoders at more than one point of the current frame while keeping the interleaver length the same. For long interleaver lengths, this approach provides dividing a data frame into sub-frames which can be treated as independent blocks. A novel decoding architecture using multi-point trellis termination and collision-free interleavers is presented. Collision-free interleavers are used to solve memory collision problems encountered by parallel decoding of turbo codes. The proposed parallel decoding architecture reduces the decoding delay caused by the iterative nature and forward-backward metric computations of turbo decoding algorithms. Our simulations verified that this turbo encoding and decoding scheme shows Bit Error Rate (BER) performance very close to that of the UMTS turbo coding while providing almost %50 time saving for the 2-point termination and %80 time saving for the 5-point termination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with and details the design of a power-aware adaptive digital image rejection receiver based on blind-source-separation that alleviates the RF analog front-end impairments. Power-aware system design at the RTL level without having to redesign arithmetic circuits is used to reduce the power consumption in nomadic devices. Power-aware multipliers with configurable precision are used to trade-off the image-rejection-ratio (IRR) performance with power consumption. Results of the simulation case studies demonstrate that the IRR performance of the power-aware system is comparable to that of the normal implementation albeit degraded slightly, but well within the acceptable limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbo codes experience a significant decoding delay because of the iterative nature of the decoding algorithms, the high number of metric computations and the complexity added by the (de)interleaver. The extrinsic information is exchanged sequentially between two Soft-Input Soft-Output (SISO) decoders. Instead of this sequential process, a received frame can be divided into smaller windows to be processed in parallel. In this paper, a novel parallel processing methodology is proposed based on the previous parallel decoding techniques. A novel Contention-Free (CF) interleaver is proposed as part of the decoding architecture which allows using extrinsic Log-Likelihood Ratios (LLRs) immediately as a-priori LLRs to start the second half of the iterative turbo decoding. The simulation case studies performed in this paper show that our parallel decoding method can provide %80 time saving compared to the standard decoding and %30 time saving compared to the previous parallel decoding methods at the expense of 0.3 dB Bit Error Rate (BER) performance degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The finite length Gold codes used in satellite navigation systems limit their dynamic range, resulting in the introduction of unwanted peaks that can mask out signals of interest. In this paper, a novel cross-correlation interference mitigation technique dealing with this issue is introduced. A brief overview of the multiple access interference problem inherent in satellite navigation systems using the code division multiple access technique is followed by the details of the proposed method. Simulation case studies and analyses of the results detailing weak signal scenarios, carried out entirely using the Global Navigation System Scope, are presented. A comparison of the results is given in the conclusions section along with remarks on the performance of the proposed method and future work to be carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Next generation Global Navigation Satellite System (GNSS) receivers will operate in multiple navigation bands. An efficient way to achieve this with lower power and cost is to employ BandPass Sampling (BPS); nevertheless, the sampling operation injects large amounts of jitter noise, which degrades the performance of the receiver. Continuous–Time (CT) Delta–Sigma (ΔΣ) modulators are capable of suppressing this noise but the impact of clock jitter at the output of the Digital– to–Analog Converter (DAC) in the feedback path of the modulator should be taken into account. This paper presents an analytical approach for describing clock jitter in GNSS receivers when a CT–ΔΣ modulator is utilized for Analog–to–Digital Conversion (ADC). The validity of the presented approach is verified through time–domain simulations using a behavioural model of the fourth–order CT–ΔΣ modulator with 1–bit NRZ DAC feedback pulse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oversampled narrow-band single-loop and multistage resonator-based bandpass sigma-delta (Σ-Δ) modulators that can accommodate different passband center to sampling frequency ratios are reported. These tunable bandpass configurations are designed by analytically determining and subsequently verifying through detailed empirical simulations the required compensation hardware to deliver enhanced noise-shaping. It is demonstrated that comparatively superior in-band signal-to-noise ratios and dynamic ranges are attributed to the inclusion of appropriate digital feedforward and feedback compensators within these structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel resonator-based bandpass Σ-Δ modulator with an in-built variable centre frequency feature is presented. This structure is designed by analytically determining and subsequently verifying through behavioural level simulations the necessary compensation hardware to be placed in the feedback to ensure stability and good dynamic range performance.