360 resultados para KRIGING
Resumo:
The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd) and bulk density (Bd); total porosity (Tp), macroporosity (Macro) and microporosity (Micro); available water capacity (AWC); sand, silt, clay, and dispersed clay in water (Disp clay) contents; electrical conductivity (EC); and weighted average diameter of aggregates (WAD). Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all soil physical properties changed as a result of leveling and its effect on all soil physical properties occurred in the whole area and not specifically in the cutting or filling areas. In future designs of leveling, we recommend overlaying a cut/fill map on the map of soil depth to the top of the B horizon in order to minimize areas with shallow surface soil after leveling.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.
Resumo:
In Brazil, grazing mismanagement may lead to soil and pasture degradation. To impede this process, integrated cropping systems such as silvopasture have been an effective alternative, allied with precision agriculture based on soil mapping for site-specific management. In this study, we aimed to define the soil property that best sheds light on the variability of eucalyptus and forage yield. The experiment was conducted in the 2011/12 crop year in Ribas do Rio Pardo, Mato Grosso do Sul State, Brazil. We analyzed linear and spatial correlations between eucalyptus traits and physical properties of a Typic Quartzipsamment at two depths (0.00-0.10 and 0.10-0.20 m). For that purpose, we set up a geostatistical grid for collection at 72 points. Gravimetric moisture in the 0.00-0.10 m layer is an important index of soil physical quality, showing correlation to eucalyptus circumference at breast height (CBH) in a Typic Quartzipsamment. With an increase in resistance to penetration in the soil surface layer, there is an increase in eucalyptus height and in neutral detergent fiber content in the forage crop. From a spatial point of view, the height of eucalyptus and the neutral detergent fiber of forage can be estimated by co-kriging analysis with soil resistance to penetration. Resistance to penetration values above 2.3 MPa indicated higher yielding sites.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
The quality of environmental data analysis and propagation of errors are heavily affected by the representativity of the initial sampling design [CRE 93, DEU 97, KAN 04a, LEN 06, MUL07]. Geostatistical methods such as kriging are related to field samples, whose spatial distribution is crucial for the correct detection of the phenomena. Literature about the design of environmental monitoring networks (MN) is widespread and several interesting books have recently been published [GRU 06, LEN 06, MUL 07] in order to clarify the basic principles of spatial sampling design (monitoring networks optimization) based on Support Vector Machines was proposed. Nonetheless, modelers often receive real data coming from environmental monitoring networks that suffer from problems of non-homogenity (clustering). Clustering can be related to the preferential sampling or to the impossibility of reaching certain regions.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.
Resumo:
The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map.Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.
Resumo:
The penetration resistance (PR) is a soil attribute that allows identifies areas with restrictions due to compaction, which results in mechanical impedance for root growth and reduced crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was determined spatial distribution models of PR, and defined areas with mechanical impedance for roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths analyzed showed spatial dependence, with adjustments to exponential and spherical models. The cluster analysis that considered sampling points allowed establishing areas with compaction problem identified in the maps by kriging interpolation. The analysis with main components identified three soil layers, where the middle layer showed the highest values of PR.
Resumo:
The knowledge of the spatial variability of noise levels and the build of kriging maps can help the evaluation of the salubrity of environments occupied by agricultural workers. Therefore, the objective of this research was to characterize the spatial variability of the noise level generated by four agricultural machines, using geostatistics, and to verify if the values are within the limits of human comfort. The evaluated machines were: harvester, chainsaw, brushcutter and tractor. The data were collected at the height of the operator's ear and at different distances. Through the results, it was possible to verify that the use of geostatistics, by kriging technique, made it possible to define areas with different levels for the data collected. With exception of the harvester, all of machines presented noise levels above than 85 dB (A) near to the operator, demanding the use of hearing protection.
Resumo:
A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.