981 resultados para K-uniformly Convex Functions
Resumo:
Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.
Resumo:
Polyclonal rabbit anti-thymocyte globulin (rATG) is widely used in solid organ transplantation (SOT) as induction therapy or to treat corticosteroid-resistant rejection. In vivo, the effect of rATG on natural killer (NK) cells has not been studied. These cells are of particular relevance after SOT because classical immunosuppressive drugs do not inhibit or even can activate NK cells. A cohort of 20 recipients at low immunological risk, that had been receiving rATG as induction therapy, was analyzed for receptor repertoire, cytotoxicity and capacity of NK cells to secrete IFN-γ before kidney transplantation and at different time points thereafter. NK cells expressed fewer killer-cell immunoglobulin-like receptors (KIR), fewer activating receptors NKG2D, but more inhibitory receptor NKG2A compatible with an immature phenotype in the first 6 months post transplantation. Both cytotoxicity of NK cells and the secretion of IFN-γ were preserved over time after transplantation.
Resumo:
The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in birds.
Resumo:
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Resumo:
BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke.
Resumo:
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22 000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Both structural and dynamical properties of 7Li at 470 and 843 K are studied by molecular dynamics simulation and the results are comapred with the available experimental data. Two effective interatomic potentials are used, i.e., a potential derived from the Ashcroft pseudopotential [Phys. Lett. 23, 48 (1966)] and a recently proposed potential deduced from the neutral pseudoatom method [J. Phys.: Condens. Matter 5, 4283 (1993)]. Although the shape of the two potential functions is very different, the majority of the properties calculated from them are very similar. The differences among the results using the two interaction models are carefully discussed.
Resumo:
RAPPORT DE SYNTHÈSE : Les profils des granules cytotoxiques des cellules T CD8 mémoires sont corrélés à la fonction, à leur état de différentiation et à l'exposition à l'antigène. Les lymphocytes T-CD8 cytotoxiques exercent leur fonction antivirale et antitumorale surtout par la sécrétion des granules cytotoxiques. En général, ce sont l'activité de dégranulation et les granules cytotoxiques (contenant perforine et différentes granzymes) qui définissent les lymphocytes T-CD8 cytotoxiques. Dans cette étude, nous avons investigué l'expression de granzyme K par cytométrie en flux, en comparaison avec l'expression de granzyme A, granzyme B et de perforine. L'expression des granules cytotoxiques a été déterminée dans lymphocytes T-CD8 qui étaient spécifiques pour des différents virus, en particulier spécifique pour le virus d'influenza (flu), le virus Ebstein Barr (EBV), le virus de cytomégalie (CMV) et le virus de l'immunodéficience humaine (HIV). Nous avons observé une dichotomie entre l'expression du granzyme K et de la perforine dans les lymphocytes T-CD8 qui étaient spécifiques aux virus mentionnés. Les profils des lymphocytes T-CD8 spécifiques à flu étaient positifs soit pour granzyme A et granzyme K soit pour le granzyme K seul, mais dans l'ensemble négatifs pour perforine et granzyme B. Les cellules spécifiques à CMV étaient dans la plupart positives pour perforine, granzyme B et A, mais négatives pour le granzyme K. Les cellules spécifiques à EBV et HIV étaient dans la majorité positives pour granzyme A, B et K, et dans la moitié des cas négatives pour la perforine. Nous avons également analysé, selon les marqueurs de mémoire de CD45 et CD127, les profils de différentiation cellulaire: Les cellules avec les granules cytotoxiques contenant exclusivement le granzyme K, étaient associées à un état de différentiation précoce. Au contraire, les protéines cytolytiques perforine, granzyme A et B, correspondent à une différentiation avancée. En outre, les protéines perforine et granzyme B, mais pas les granzymes A et K, sont corrélées à une activité cytotoxique. Finalement, des changements dans l'exposition d'antigène in vitro et in vivo suivant une infection primaire d' HIV ou une vaccination modulent le profil de granules cytotoxiques. Ces résultats nous permettent d'étendre la compréhension de la relation entre les différents profils de granules cytotoxiques des lymphocytes T-CD8 et leur fonction, leur état de différentiation et l'exposition à l'antigène.
Resumo:
A chronic inflammatory microenvironment favors tumor progression through molecular mechanisms that are still incompletely defined. In inflammation-induced skin cancers, IL-1 receptor- or caspase-1-deficient mice, or mice specifically deficient for the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) in myeloid cells, had reduced tumor incidence, pointing to a role for IL-1 signaling and inflammasome activation in tumor development. However, mice fully deficient for ASC were not protected, and mice specifically deficient for ASC in keratinocytes developed more tumors than controls, suggesting that, in contrast to its proinflammatory role in myeloid cells, ASC acts as a tumor-suppressor in keratinocytes. Accordingly, ASC protein expression was lost in human cutaneous squamous cell carcinoma, but not in psoriatic skin lesions. Stimulation of primary mouse keratinocytes or the human keratinocyte cell line HaCaT with UVB induced an ASC-dependent phosphorylation of p53 and expression of p53 target genes. In HaCaT cells, ASC interacted with p53 at the endogenous level upon UVB irradiation. Thus, ASC in different tissues may influence tumor growth in opposite directions: it has a proinflammatory role in infiltrating cells that favors tumor development, but it also limits keratinocyte proliferation in response to noxious stimuli, possibly through p53 activation, which helps suppressing tumors.
Resumo:
Tämän työn tarkoituksena oli suunnitella toimiva jätehuoltoPohjois-Karjalan keskussairaalan alueelle vuosina 2007-2008 rakennettavaan laajennus K:hon. Tavoitteena oli löytää kustannustehokas ja hyvin vanhan rakennuskannan logistiikan kanssa yhteen toimiva jätehuollon vaihtoehto. Suunnittelua ohjasivat lakien, asetusten ja muiden määräyksien ohella laajennuksen pitkälle edennyt suunnitteluvaihe ja vanhan rakennuskannan jätehuollon toimintatavat. Jätehuolto on yksi merkittävä osa sairaalan perustehtävää palvelevista tukitoiminnoista. Jätehuoltojärjestelmä on sairaanhoitotyötä palveleva, jos järjestelyt ovat loogisia, toimivia ja logistiset yhteydet ovat mahdollisimman lyhyitä. Nykyinen ihmistyövoiman käyttöön perustuva jätehuollon prosessi on esitetty varsin tarkasti, sillä laajennuksen jätehuoltosuunnitelman on käytännön syistä pohjauduttava nykyiseen toimintatapaan. Työssä esitetään uusia jätehuollon vaihtoehtoja kustannusarvioineen, mutta ehdotukset jäävät lähinnä visiotasolle laajennuksen pitkälle ehtineen suunnitteluvaiheen vuoksi. Konkreettiset vaihtoehdot koskevat jätejakeiden keräystä ja niiden kuljetuksia. Keskus sairaalan jätehuollon tehostaminen vaatii kokonaisvaltaisen jätehuoltosuunnitelman laatimista koko sairaalan alueelle. Sen myötä on mahdollista lisätä kustannustehokkuutta ottamalla käyttöön teknisiä ratkaisuja. Jätehuoltosuunnitelma laajennukseen on työssä tehty, mutta työn suurimmaksi saavutukseksi jää kuitenkin esitys myöhempien hakkeiden jätehuollon suunnittelun aikaistamisesta jo hankesuunnitteluvaiheeseen.
Resumo:
Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals.
Resumo:
The conversion of cellular prion protein (PrPc), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.