190 resultados para Jatropha weddelliana
Resumo:
Premise of the study: Microsatellite primers were developed for Jatropha curcas (Euphorbiaceae), a tree species with large potential for biofuel production, to investigate its natural genetic diversity and mating system to facilitate the establishment of tree improvement and conservation programs. Methods and Results: Using a protocol for genomic library enrichment, 104 clones containing 195 repeat motifs were identified. Primer pairs were developed for 40 microsatellite loci and validated in 41 accessions of J. curcas from six provenances. Nine loci were polymorphic revealing from two to eight alleles per locus, and six primers were able to amplify alleles in the congeners J. podagrica, J. pohliana, and J. gossypifolia, but not in other Euphorbiaceae species, such as Hevea brasiliensis, Manihot esculenta, or Ricinus communis. Conclusions: The primers developed here revealed polymorphic loci that are suitable for genetic diversity and structure, mating system, and gene flow studies in J. curcas, and some congeners.
Resumo:
Le tematiche che saranno affrontate all’interno del mio elaborato toccano diversi temi sensibili, tutti relativi all’ambiente e alla sua conservazione. Nella prima parte della tesi parlerò di riscaldamento globale, cambiamento climatico ma soprattutto di energie rinnovabili, in particolare l’energia da biomasse. Nella parte centrale la lente di ingrandimento verrà posta sui diversi tipi di energia e sulle relative tecnologie. Mi concentrerò prevalentemente sugli oli vegetali a scopo energetico descrivendo le principali colture e le tecnologie di estrazione. Proseguirò quindi con un excursus sulla Jatropha Curcas descrivendo in dettaglio le caratteristiche di tale coltura in termini di arboricoltura e utilizzi energetici. L’ultima parte dell’elaborato sarà dedicata all’esposizione di due casi applicativi riguardanti la Jatropha Curcas, in particolare il dimensionamento energetico di una scuola e di un ambulatorio medico in Tanzania e Madagascar.
Resumo:
Access to affordable and renewable sources of energy is crucial to reducing poverty and enhancing rural development in countries of the global South. Straight vegetable oil was recently identified as a possible alternative to conventional biomass for rural energy supply. In this context, the Jatropha curcas Linn. species has been extensively investigated with regard to its potential as a biofuel feedstock. In contrast, only little is known about Jatropha mahafalensis Jum. & H. Perrier, which is an indigenous and endemic representative of the Jatropha genus in Madagascar. This paper explores the potential and suitability of J. mahafalensis as a biofuel feedstock. Seed samples were collected in the area of Soalara in south-western Madagascar in February and September 2011. Two agro-ecological zones (coastal area and calcareous plateau) and two plant age groups (below and above 10 years) were considered. These four sample groups were analyzed with regard to oil properties, element contents, and fatty acid profiles. Measured values differed greatly between the two harvests, probably owing to different climatic or storage conditions. No direct relation between age of trees or location and oil quality could be established. The analyses indicate that J. mahafalensis oil can be used in oil lamps, cooking stoves and stationary combustion engines for electrification or for biodiesel production. However, modifications in storage and extraction methods, as well as further processing steps are necessary to enable its utilization as a straight vegetable oil and feedstock for biodiesel production. If these technical requirements can be met, and if it turns out that J. mahafalensis oil is economically competitive in comparison with firewood, charcoal, paraffin and petroleum, it can be considered as a promising feedstock for rural energy supply.
Resumo:
There is still discussion regarding whether liquid biofuels can contribute to rural energy security in the global South. We argue that transitioning to a village energy supply based on jatropha hedges around smallholder plots is possible, but requires collective effort for the acquisition and maintenance of processing equipment and for the running of village generators. The use of jatropha oil for lighting in rural households is affordable and technically possible, but not ideal if more efficient electric solutions exist. Cooking with jatropha oil or press cake is also possible, but quantities produced in hedges can only substitute a small part of the firewood used by rural households.
Resumo:
Editorial
Resumo:
Between 2004 and 2007, NGOs, community based organisations and private investors promoted jatropha in Kenya with the aim of generating additional income and producing biofuel for rural development. By 2008 it became gradually evident that jatropha plantations (both mono- and intercropping) are uneconomical and risky due to competition for land and labour with food crops. Cultivation of jatropha hedges was found to have better chances of economic success and to present only little risks for the adopting farmers. Still, after 2008 a number of farmers went on adopting jatropha in plots rather than as hedges. It is hypothesised that lack of awareness about the low economic prospects of jatropha plantations was the main reason for continued adoption, and that smallholder farmers with higher resource endowments mainly ventured into its cultivation. In this study we provide an empirical basis for understanding the role of households' capital assets in taking up new livelihood strategies by smallholder farmers in three rural districts in Kenya. For that purpose, we assess the motivation and enabling factors that led to the adoption of jatropha as a new livelihood strategy, as well as the context in which promotion and adoption took place. A household survey was conducted in 2010, using a structured questionnaire, to collect information on household characteristics and capital asset endowment. Data were analysed using descriptive statistics and non-parametric statistical tests. We established that access to additional income and own energy supply were the main motivation for adoption of jatropha, and that financial capital assets do not necessarily have a positive influence on adoption as hypothesised. Further, we found that the main challenges that adopting farmers faced were lack of access to information on good management practices and lack of a reliable market. We conclude that continued adoption of on-farm jatropha after 2008 is a result of lacking awareness about the low economic value of this production type. We recommend abandoning on-farm production of jatropha until improved seed material and locally adapted agronomic knowledge about jatropha cultivation becomes available and its production becomes economically competitive.
Resumo:
Many observers view Jatropha as a miracle plant that grows in harsh environments, halts land degradation and provides seeds for fuel production. This makes it particularly attractive for use in Ethiopia, where poverty levels are high and the degradation of agricultural land is widespread. In this article, we investigate the potentials and limitations of a government-initiated Jatropha project for smallholders in northeastern Ethiopia from a green economy perspective. Data are based on a 2009 household survey and interviews with key informants, as well as on a 2012 follow-up round of interviews with key informants. We conclude that the project has not contributed to a greener economy so far, but has the potential to do so in the future. To maximize Jatropha’s potential, interventions must focus mainly on smallholders and pay more attention to the entire biofuel value chain.
Resumo:
In many parts of the eastern African region wood-based fuels will remain dominant sources of energy in coming decades. Pressure on forests, especially in semi-arid areas will therefore continue increasing. In this context, the role of liquid biofuels as substitutes for firewood and charcoal, to help reducing pressure on woody biomass and contributing to a better energy security of rural communities, has remained controversial among researchers and practitioners. At household level, the economic and technical feasibility of straight vegetable oil (SVO) was assessed mainly on Jatropha curcas, with unpersuasive results. So far nothing is known about the suitability as an energy carrier of Jatropha mahafalensis Jum. & H. Perrier, the only endemic representative of the Jatropha genus in Madagascar. This paper explores the potential of this plant as a biofuel feedstock in the agro-pastoral area of Soalara, in the semi-arid south-western part of Madagascar. Only hedge-based production was considered to rule out competition over land with food crops. Yield data, the length of currently existing hedges and energy consumption patterns of households were used to assess the quantitative potential and economic viability of J. mahafalensis SVO for lighting and cooking. Tests were conducted with cooking and lighting devices to assess their technical suitability at household level. The paper concludes that J. mahafalensis hedges have some potential to replace paraffin for lighting (though without much economic benefit for the concerned households), but not to replace charcoal or firewood for cooking. The paper recommends that rural energy strategies in similar contexts do not focus only on substituting current fuels with SVO, but should also take into consideration other alternatives. In the case of cooking, there seems to be substantially more potential in increasing the efficiency of current fuel production and consumption technologies (kilns and stoves); and in the case of lighting, solutions based on SVO need to be compared against other options such as portable solar devices.
Resumo:
Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.
Resumo:
Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.
Resumo:
Antiophidic activity from decoct of Jatropha gossypiifolia L. leaves against Bothrops jararaca venom. Snakebites are a serious worldwide public health problem. In Latin America, about 90 % of accidents are attributed to snakes from Bothrops genus. Currently, the main available treatment is the antivenom serum therapy, which has some disadvantages such as inability to neutralize local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies to treat snakebites is relevant. Jatropha gossypiifolia L., a medicinal plant popularly known in Brazil as “pinhão-roxo”, is very used in folk medicine as antiophidic. So, the aim of this study is to evaluate the antiophidic properties of this species against enzymatic and biological activities from Bothrops jararaca snake venom. The aqueous leaf extract of J. gossypiifolia was prepared by decoction. The inhibition studies were performed in vitro, by pre-incubation of a fixed amount of venom with different amounts of extract from J. gossypiifolia for 60 min at 37 °C, and in vivo, through oral or intraperitoneal treatment of animals, in different doses, 60 min before venom injection. The proteolytic activity upon azocasein was efficiently inhibited, indicating inhibitory action upon metalloproteinases (SVMPs) and/or serine proteases (SVSPs). The extract inhibited the fibrinogenolytic activity, which was also confirmed by zymography, where it was possible to observe that the extract preferentially inhibits fibrinogenolytic enzymes of 26 and 28 kDa. The coagulant activity upon fibrinogen and plasma were significantly inhibited, suggesting an inhibitory action upon thrombin-like enzymes (SVTLEs), as well as upon clotting factor activators toxins. The extract prolonged the activated partial thromboplastin time (aPTT), suggesting an inhibitory action toward not only to SVTLEs, but also against endogenous thrombin. The defibrinogenating activity in vivo was efficiently inhibited by the extract on oral route, confirming the previous results. The local hemorrhagic activity was also significantly inhibited by oral route, indicating an inhibitory action upon SVMPs. The phospholipase activity in vitro was not inhibited. Nevertheless, the edematogenic and myotoxic activities were efficiently inhibited, by oral and intraperitoneal route, which may indicate an inhibitory effect of the extract upon Lys49 phospholipase (PLA2) and/ or SVMPs, or also an anti-inflammatory action against endogenous chemical mediators. Regarding the possible action mechanism, was observed that the extract did not presented proteolytic activity, however, presented protein precipitating action. In addition, the extract showed significant antioxidant activity in different models, which could justify, at least partially, the antiophidic activity presented. The metal chelating action presented by extract could be correlated with SVMPs inhibition, once these enzymes are metal-dependent. The phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins, from which the flavonoids could be pointed as major compounds, based on chromatographic profile obtained by thin layer chromatography (TLC). In conclusion, the results demonstrate that the J. gossypiifolia leaves decoct present potential antiophidic activity, including action upon snakebite local effects, suggesting that this species may be used as a new source of bioactive molecules against bothropic venom.