978 resultados para Jackson Integral
Resumo:
Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.
Resumo:
The relations between partial and integral properties of ternary solutions along composition trajectories suggested by Kohler, Colinet and Jacob, and along an arbitrary path are derived. The chemical potentials of the components are related to the slope of integral free energy by expressions involving the binary compositions generated by the intersections of the composition trajectory with the sides of the ternary triangle. Only along the Kohler composition trajectory it is possible to derive the integral free energy from the variation of the chemical potential of a single component with composition or vice versa. Along all other paths the differential of the integral free energy is related to two chemical potentials. The Gibbs-Duhem integration proposed by Darken for the ternary system uses the Kohler isogram. The relative merits of different limits for integration are discussed.
Resumo:
A straightforward analysis involving the complex function-theoretic method is employed to determine the closed-form solution of a special hypersingular integral equation of the second kind, and its known solution is recovered.
Resumo:
Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.
Resumo:
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Resumo:
Let be a noncompact symmetric space of higher rank. We consider two types of averages of functions: one, over level sets of the heat kernel on and the other, over geodesic spheres. We prove injectivity results for functions in which extend the results in Pati and Sitaram (Sankya Ser A 62:419-424, 2000).
Resumo:
Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.
Resumo:
In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.
Resumo:
The fluctuations of a Markovian jump process with one or more unidirectional transitions, where R-ij > 0 but R-ji = 0, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution, which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically and found to show the same qualitative features as systems exhibiting microreversibility.