950 resultados para Islets encapsulation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the encapsulation of titanium (IV) silsesquioxane into the supercavities of NH4USY ultra stabilized zeolite, after chemical treatment. The modified zeolite was characterized by Fourier transform infrared spectra, Nuclear magnetic resonance, scanning electronic microscopy, X-ray diffraction and thermogravity. This encapsulated titanium (IV) silsesquioxane can adsorb Azure A chloride after treatment with H3PO4, without modifier leaching problems. In an electrochemical study, the cyclic voltammograms of the graphite paste modified electrode, shows two redox couples with formal potential (E-0) -0. 1 V and 0.21 V to I and II redox couples respectively (v = 700 mV s(-1); Britton Robinson buffer (B-R) solution, pH 3) versus SCE ascribed to a monomer and dimmer of azure. This paper shows the use of ultra stabilized zeolite in the electrochemical field as host for molecules with nanometric dimensions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Changes in Ca-45 uptake and insulin secretion in response to glucose, leucine, and arginine were measured in isolated islets derived from 4-week-old rats born of mothers maintained with normal protein (NP, 17%) or low protein (LP, 6%) diet during pregnancy and lactation. Glucose provoked a dose-dependent stimulation of insulin secretion in both groups of islets, with basal (2.8 mmol/L glucose) and maximal release (27.7 mmol/L glucose) significantly reduced in LP compared with NP islets. In the LP group the concentration-response curve to glucose was shifted to the right compared with the NP group, with the half-maximal response occurring at 16.9 and 13.3 mmol/L glucose, respectively. In LP islets, glucose-induced first and second phases of insulin secretions were drastically reduced. In addition, insulin response to individual amino acids, or in association with glucose, was also significantly reduced in the LP group compared with NP islets. Finally, in LP islets the Ca-45 uptake after 5 minutes or 90 minutes of incubation (which reflect mainly the entry and retention, respectively, of Ca2+), was lower than in NP islets. These data indicate that in malnourished rats both initial and sustained phases of insulin secretion in response to glucose were reduced. This poor secretory response to nutrients seems to be the consequence of an altered Ca2+ handling by malnourished islet cells. (J. Nutr. Biochem. 10:37-43, 1999) (C) Elsevier B.V. 1999. All rights reserved.
Resumo:
Glucose-induced insulin secretion rom and Ca-45 uptake by isolated pancreatic islets, derived from rats fed with normal (NPD) or low protein diet (LPD), were studied. Insulin secretion from both types of islets in response to increasing concentrations of glucose followed an S-shaped pattern. However, basal secretion observed at substimulatory concentrations of glucose (0-5.6 mM), as well as maximal release, obtained at 16.7 mM or higher glucose concentrations were significantly reduced in islets from LPD. Furthermore, in LPD rat islets, the dose-response curve to glucose was clearly shifted to the right compared with NPD islets, with the half-maximal response occurring at 8.5 and 14.4 mM glucose for NPD and LPD islets, respectively. In islets from NPD rats, the Ca-45 content, after 5 or 90 min in the presence of 8.3 mM glucose, was higher than that observed for islets kept at 2.8 mM glucose and increased further at 16.7 mM glucose. After 5 min of incubation, the Ca-45 uptake by LPD islets in the presence of 8.3 mM glucose was slightly higher than basal values (2.8 mM glucose); however, no further increase in the Ca-45 uptake was noticed at 16.7 mM glucose. In LPD islets a significant increase in Ca-45 uptake over basal values was registered only at 16.7 mM glucose, after 90 min of incubation. These data indicate that the poor secretary response to glucose observed in islets from LPD rats may be related to a defect in the ability of glucose to increase Ca2+ uptake and/or to reduce Ca2+ efflux from beta-cells.
Resumo:
Highly purified Tityustoxin V (TsTX-V), an alpha-toxin isolated from the venom of the Brazilian scorpion Tityus serrulatus, was obtained by ion exchange chromatography on carboxymethylcellulose-52. It was shown to be homogeneous by reverse phase high performance liquid chromatography, N-terminal sequencing (first 39 residues) of the reduced and alkylated protein and by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate and tricine. Following enzymatic digestion, the complete amino acid sequence (64 residues) was determined. The sequence showed higher homology with the toxins from the venoms of the North African than with those of the North and South American scorpions. Using the rate of Rb-86(+) release from depolarized rat pancreatic beta-cells as a measure of K+ permeability changes, TsTX-V (5.6 mu g/ml) was found to increase by 2.0-2.4-fold the rate of marker outflow in the presence of 8.3 mM glucose. This effect was persistent and slowly reversible, showing similarity to that induced by 100 mu-M veratridine, an agent that increases the open period of Na+ channels, delaying their inactivation. It is suggested that, by extending the depolarized period, TsTX-V indirectly affects beta-cell voltage-dependent K+ channels, thus increasing K+ permeability.
Resumo:
The effects of PRL treatment on insulin content and secretion, and Rb-86 and Ca-45 fluxes from neonatal rat islets maintained in culture for 7-9 days were studied. PRL treatment enhanced islet insulin content by 40% and enhanced early insulin secretion evoked by 16.7 mm glucose. Insulin release stimulated by oxotremorine-M, a muscarinic agonist, in the presence of glucose (8.3 or 16.7 mm) was unchanged by PRL treatment. However, PRL treatment potentiated phorbol 12,13-dibutyrate-stimulated insulin secretion in the presence of the above glucose concentrations. PRL treatment potentiated the reduction in Rb-86 efflux induced by glucose or tolbutamide and enhanced the increase in Rb-86 efflux evoked by diazoxide. PRL treatment slightly potentiated the increment in Ca-45 uptake induced by high concentrations of K+, but failed to affect the increment evoked by 16.7 mm glucose. Since glucose-induced Ca-45 uptake was not affected by PRL, we suggest that the enhancement in first phase insulin secretion evoked by glucose in the PRL-treated islets occurs at a step in the secretory process that may involve protein kinase-C. These data further support observations that PRL treatment increases islet sensitivity to glucose.
Resumo:
The presence of tyrosine-phosphorylated proteins was studied in cultured rat pancreatic islets, Immunoblotting performed with total extracts of islets cultured in the presence of 1.8 or 5.6 mM glucose revealed at least three distinct tyrosine-phosphorylated bands (25 kDa, 95 kDa and 165-185 kDa). After 12 h incubation in medium containing 1.8 mM glucose, a pulse exposition to 11 or 22 mM glucose or to 10(-7) M insulin led to a substantial increase in the phosphorylation of all three bands, with no appearance of novel bands. Immunoprecipitation with specific antibodies demonstrated that the signal detected at 95 kDa corresponds to the beta subunit of the insulin receptor (IR) while the band at 165-185 kDa corresponds to the early substrates of the insulin receptor, IRS-1 and IRS-2. Immunoprecipitation with IRS-I or IRS-2 antisera detected their association with the lipid metabolizing enzyme phosphatidylinositol 3-kinase (PI 3-kinase), Thus, this is the first demonstration that elements involved in the insulin-signalling pathway of traditional target tissues are also present in pancreatic islets and are potentially involved in auto- and paracrine-signalling in this organ.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Islet Neogenesis Associated Protein (INGAP) increases pancreatic beta-cell mass and potentiates glucose-induced insulin secretion. Here, we investigated the effects of the pentadecapeptide INGAP-PP in adult cultured rat islets upon the expression of proteins constitutive of the K-ATP(+) channel, Ca2+ handling, and insulin secretion. The islets were cultured in RPMI medium with or without INGAP-PP for four days. Thereafter, gene (RT-PCR) and protein expression (Western blotting) of Foxa2, SUR1 and Kir6.2, cytoplasmic Ca2+ ([Ca2+](i)), static and dynamic insulin secretion, and Rb-86 efflux were measured. INGAP-PP increased the expression levels of Kir6.2, SUR1 and Foxa2 genes, and SUR1 and Foxa2 proteins. INGAP-PP cultured islets released significantly more insulin in response to 40 mM KCl and 100 mu M tolbutamide. INGAP-PP shifted to the left the dose-response curve of insulin secretion to increasing concentrations of glucose (EC50 of 10.0 +/- 0.4 vs. 13.7 +/- 1.5 mM glucose of the controls). It also increased the first phase of insulin secretion elicited by either 22.2 mM glucose or 100 mu M tolbutamide and accelerated the velocity of glucose-induced reduction of Rb-86 efflux in perifused islets. These effects were accompanied by a significant increase in [Ca2+](i) and the maintenance of a considerable degree of [Ca2+](i) oscillations. These results confirm that the enhancing effect of INGAP-PP upon insulin release, elicited by different secretagogues, is due to an improvement of the secretory function in cultured islets. Such improvement is due, at least partly, to an increased K-ATP(+) channel protein expression and/or changing in the kinetic properties of these channels and augmented [Ca2+](i) response. Accordingly, INGAP-PP could potentially be used to maintain the functional integrity of cultured islets and eventually, for the prevention and treatment of diabetes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ± 0.06% and 2.08 ± 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ± 0.15% and 3.09 ± 0.21 % of the islet insulin content in control and 2.43 ± 0.16% and 4.31 ± 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 μg/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.
Resumo:
Insulin secretion and 45SCa2+ uptake and efflux were studied in neonatal rat islets maintained in culture for 7 or 19 days in the absence or presence of prolactin (PRL). Insulin secretion in response to glucose (G), leucine (Leu), arginine (Arg) and carbachol (Cch) was augmented after 7 and 19 days in culture, compared to basal secretion (G 2.8 mM), in both PRL- treated and control islets. However, the increase in insulin secretion induced by the above secretagogues was higher in islets cultured in the presence of PRL for 19 days. In PRL-treated islets, the 45Ca2+ content after a 5 min incubation in the presence of G, Leu, Arg and Cch was significantly higher than the control only in islets cultured for 19 days. Except with Arg, the 45Ca2+ uptake in PRL-treated islets after a 90 min incubation was also significantly higher than the control only in islets cultured for 19 days. Finally, Leu-induced alterations in the 45Ca2+ efflux were higher in PRL-treated than in control islets cultured for 7 or 19 days. In the absence of external Ca2+, the reduction in 45Ca2+ efflux induced by glucose was also significantly higher in PRL-treated than in control islets. This effect was slightly potentiated after 19 days in culture. These data further support the hypothesis that PRL treatment enhances maturation of the secretory mechanism in neonatal islets. This effect can be potentiated even more if the treatment is prolonged.