307 resultados para Iridium
Resumo:
Half-title. Reprinted from the Monthly notices of the Royal astronomical society, vol.XLIX, no.7.
Resumo:
The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in seven sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse (>500 ?m) ejecta debris. Three cores with well-preserved impact deposits, PS2704-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found previously in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2702-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 g/cm**2 of debris over a wide area of the ocean floor. However, there are still large uncertainties over the actual regional or global extent of this unique sediment deposit.
Resumo:
Anomalous concentrations of Ir have been found in upper Eocene sediments from Ocean Drilling Program (ODP) Hole 1090B. Clear and dark-colored spherules that are believed to be microtektites and clinopyroxene-bearing microkrystites, respectively, were found in the samples with highest Ir. The peak Ir concentration in Sample 177-1090B-30X-5,105-106 (954 pg/g) and the net Ir fluence (14 ng/cm**2) at this site are higher than at most other localities except for Caribbean site RC9-58. The Ir anomaly and impact debris are probably correlative with similar deposits found at ODP Site 689 on the Maude Rise and at other localities around the world.
Resumo:
Hydrogenous manganese nodules form on the ocean floor by slow authigenic precipitation (1-6 mm/Ma) of the oxyhydroxides of manganese and iron that continuously scavenge trace elements from the marine environment. Consequently, these nodules represent independent marine deposits useful for the study of the chemical signatures of the paleomarine environments. The results presented are a continuation of a study of the Zetes-3D nodule from the Pacific Ocean. It is a large (24x17x10 cm) hydrogenous nodule whose slow growth rate of 1.3 mm/Ma was detremined using 10Be techniques. A positive cerium anomaly is observed throughout the nodule and its Ir content indicates a sharp spike at 54-62 Ma in fair agreement with the K-T event.
Resumo:
Concentrations of Ir have been measured in 87 sediment samples from Ocean Drilling Program Site 1096 in search of evidence of fallout from the impact of the Eltanin asteroid, which occurred at 2.15 Ma, ~1300 km northwest of the site. An additional six samples were measured from a unique sand layer and adjacent sediments that are dated at ~1.6 Ma. These 93 sediment samples are all silts and muds that were deposited on a continental rise drift of the Antarctic Peninsula. No evidence of the Eltanin impact deposit was found in this study.
Resumo:
This paper provides a review of the state of the art relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was the explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of - 77dbm. Latencies were in the order of 500ms (1/2 the latency of Iridium), an average download speed of 0.48Mb/s, average uplink speed of 0.85Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.
Resumo:
Atomic layer deposition (ALD) is a method to deposit thin films from gaseous precursors to the substrate layer-by-layer so that the film thickness can be tailored with atomic layer accuracy. Film tailoring is even further emphasized with selective-area ALD which enables the film growth to be controlled also on the substrate surface. Selective-area ALD allows the decrease of a process steps in preparing thin film devices. This can be of a great technological importance when the ALD films become into wider use in different applications. Selective-area ALD can be achieved by passivation or activation of a surface. In this work ALD growth was prevented by octadecyltrimethoxysilane, octadecyltrichlorosilane and 1-dodecanethiol SAMs, and by PMMA (polymethyl methacrylate) and PVP (poly(vinyl pyrrolidone) polymer films. SAMs were prepared from vapor phase and by microcontact printing, and polymer films were spin coated. Microcontact printing created patterned SAMs at once. The SAMs prepared from vapor phase and the polymer mask layers were patterned by UV lithography or lift-off process so that after preparation of a continuous mask layer selected areas of them were removed. On these areas the ALD film was deposited selectively. SAMs and polymer films prevented the growth in several ALD processes such as iridium, ruthenium, platinum, TiO2 and polyimide so that the ALD films did grow only on areas without SAM or polymer mask layer. PMMA and PVP films also protected the surface against Al2O3 and ZrO2 growth. Activation of the surface for ALD of ruthenium was achieved by preparing a RuOX layer by microcontact printing. At low temperatures the RuCp2-O2 process nucleated only on this oxidative activation layer but not on bare silicon.
Resumo:
Isoflavonoids are naturally occurring plant derived biochemicals, which act as phytoalexins. Isoflavonoids are of interest due to their estrogenic and other potential physiological properties, particularly in mammals that typically consume isoflavonoid rich nutrients such as soy and red clover. The literature review of this thesis mainly focuses on the reduced metabolites of hydroxy and/or methoxy substituted isoflavones with four groups: isoflavan-4-ols, isoflav-3-enes, isoflavans and α-methyldeoxybenzoins (1,2-diarylpropan-1-ones), which are all reduced metabolites of food derived isoflavones in mammals. Related isoflavan-4-ones are briefly discussed. Results of an extensive survey of the literature concerning the synthesis of polyhydroxy- or methoxysubstituted isoflavonoids and especially asymmetric approaches are discussed. The experimental section describes new synthetic methods to prepare polyphenolic reduced isoflavonoid structures such as isoflav-3-enes, isoflavan-4-ones, cis- and trans-isoflavan-4-ols, 1,2-diarylpropan-1-ones and isoflavans by various hydride reagents and hydrogenations. The specific reactivity differences of various hydride reagents toward isoflavonoids are discussed. The first enantioselective synthesis of natural (S)-(-)-equol and the opposite enantiomer (R)-(+)-equol is also described by the asymmetric iridium PHOX catalysed hydrogenation of isoflav-3-enes. Both of these equol enantiomers are found to possess biological activity in mammals due to estrogen receptor binding activity. The natural enantiomer prefers estrogen receptor β and the R-enantiomer prefers the estrogen receptor α. Also the precursor, isoflav-3-ene, is found to possess positive biological effects on mammals. In connection with the synthetic work, the (S)-(-)-equol was discovered from serum of ewes after isoflavone rich red clover feeding. The chiral HPLC method was developed to identify natural equol enantiomer for the first time in this species. The first synthesis of natural isoflavonoid (R)-(-)-angolensin and its enantiomer (S)-(+)-angolensin is desribed by the use of recyclable chiral auxiliaries (chiral pseudoephedrines). The method offers a general approach also to other natural polyphenolic 1,2-diarylpropan-1-ones and to further study isoflavonoid metabolism in human and other mammals. The absolute configurations of these new chiral isoflavonoid metabolites were determined by X-ray spectroscopy. Also thorough NMR and MS analysis of synthesised structures are presented.
Resumo:
Iridium nanostructures with different morphologies are synthesized by a simple, environmentally friendly approach in aqueous media under mild conditions. The morphology dependent electrocatalytic activity of Ir nanochains and nanoparticles towards oxygen reduction reaction (ORR) has been demonstrated in both acidic and alkaline media. Comparative electrochemical studies reveal that nanochains exhibit significantly enhanced ORR activities in both acidic and alkaline media as compared with nanoparticles, as a result of the continuous structure of interconnected particles. The mechanism of oxygen reduction on Ir nanostructures predominantly follows a four-electron pathway in alkaline and acidic solutions. Excellent stability and good selectivity towards methanol tolerance are reported.