958 resultados para Ion Beam Deposition
Resumo:
Photoluminescence experiments have identified strain as the origin for polarization pinning in vertical cavity surface emitting lasers post-processed by focused ion beam etching. Theoretical models were applied to deduce the strain in devices. Post-annealing was used to optimize polarization pinning.
Resumo:
Nanostructured carbon thin films have been grown by deposition of cluster beams produced by a supersonic expansion. Due to separation effects typical of supersonic beams, films with different nanostructures can be grown by the simple intercepting of different regions of the cluster beam with a substrate. Films show a low-density porous structure, which has been characterized by Raman and Brillouin spectroscopy. Film morphology suggests that growth processes are similar to those occurring in a ballistic deposition regime.
Resumo:
In this study, a collimating lens is introduced at the output facet of a tapered waveguide laser to compensate for the divergence of the optical mode. The collimating lens is shown to enhance the laser efficiency while simultaneously reducing the far field divergence.
Resumo:
We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching - a well-established technique for optical mask repair and for IC failure analysis and repair - without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5×10 -4μm3/pC. At a current of 3nA, for example, this corresponds to an etch rate of 1.05μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1μm. Changes in the roughness of the etched surface plane stay below 8nm.
Resumo:
To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (Ra) of FIB milled areas after cleaning is less than 2 nm. © 2010.
Resumo:
Non-conventional methods of machining are used for many engineering applications where the traditional processes fail to be cost-effective. Such processes include Ion Beam Machining (IBM), focused ion beam (FIB) machining and plasma discharge machining. The mechanisms of material removal and associated hardware and software developed for industrial applications of these fascinating electro-physical and chemical machining processes are reviewed together with the latest research findings. © 2009 CIRP.
Resumo:
Single-phase gadolinium disilicide was fabricated by a low-energy ion-beam implantation technique. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the composition and chemical states of the film. The structure of the sample was analyzed by X-ray diffraction and the surface morphology was investigated by scan electron microscopy. Based on the measurements, only orthorhombic GdSi2 phase was found in the sample and the surface morphology was pitting. After annealing at 350degreesC for 30 min at Ar atmosphere, the full-width at half-maximum of GdSi2 became narrower. It indicates that the GdSi2 is crystallized better after annealing. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method of manufacturing two-dimensional photonic crystals on several kinds of semiconductor materials in near infrared region by a focused ion beam is introduced, and the corresponding fabrication results are presented and show that the obtained parameters of fabricated photonic crystals are identical with the designed ones. Using the tunable laser source, the spectra of the fabricated passive photonic crystal and the active photonic crystal are measured. The experiment demonstrates that the focused ion-beam can be used to fabricate the perfect two-dimensional photonic crystals and their devices.
Resumo:
Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.