845 resultados para Intrusion Detection, Computer Security, Misuse
Resumo:
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.
Resumo:
Drawing on data from the Australian Business Assessment of Computer User Security (ABACUS) survey, this paper examines a range of factors that may influence businesses’ likelihood of being victimised by a computer security incident. It has been suggested that factors including business size, industry sector, level of outsourcing, expenditure on computer security functions and types of computer security tools and/or policies used may influence the probability of particular businesses experiencing such incidents. This paper uses probability modelling to test whether this is the case for the 4,000 businesses that responded to the ABACUS survey. It was found that the industry sector that a business belonged to, and business expenditure on computer security, were not related to businesses’ likelihood of detecting computer security incidents. Instead, the number of employees that a business has and whether computer security functions were outsourced were found to be key indicators of businesses’ likelihood of detecting incidents. Some of the implications of these findings are considered in this paper.
Resumo:
The need for paying with mobile devices has urged the development of payment systems for mobile electronic commerce. In this paper we have considered two important abuses in electronic payments systems for detection. The fraud, which is an intentional deception accomplished to secure an unfair gain, and an intrusion which are any set of actions that attempt to compromise the integrity, confidentiality or availability of a resource. Most of the available fraud and intrusion detection systems for e-payments are specific to the systems where they have been incorporated. This paper proposes a generic model called as Activity-Event-Symptoms(AES) model for detecting fraud and intrusion attacks which appears during payment process in the mobile commerce environment. The AES model is designed to identify the symptoms of fraud and intrusions by observing various events/transactions occurs during mobile commerce activity. The symptoms identification is followed by computing the suspicion factors for event attributes, and the certainty factor for a fraud and intrusion is generated using these suspicion factors. We have tested the proposed system by conducting various case studies, on the in-house established mobile commerce environment over wired and wire-less networks test bed.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices,we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: 1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, 2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which 3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time),based on the sensor observations obtained until time slot k.Our results show that an optimum closed loop control onMk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
Fusion of multiple intrusion detection systems results in a more reliable and accurate detection for a wider class of intrusions. The paper presented here introduces the mathematical basis for sensor fusion and provides enough support for the acceptability of sensor fusion in performance enhancement of intrusion detection systems. The sensor fusion system is characterized and modeled with no knowledge of the intrusion detection systems and the intrusion detection data. The theoretical analysis is supported with an experimental illustration with three of the available intrusion detection systems using the DARPA 1999 evaluation data set.
Resumo:
In this preliminary study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which are based on Snort and incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. We measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the informativeness of these measures. Finally, we propose a new measure of inconsistency for prioritized knowledge which incorporates the normalized number of atoms in a language involved in inconsistency to provide a deeper inspection of inconsistent formulae. We conclude that such measures are useful for the network intrusion domain assuming that introducing expert knowledge for correlation of rules is feasible.
Resumo:
A new niche of densely populated, unprotected networks is becoming more prevalent in public areas such as Shopping Malls, defined here as independent open-access networks, which have attributes that make attack detection more challenging than in typical enterprise networks. To address these challenges, new detection systems which do not rely on knowledge of internal device state are investigated here. This paper shows that this lack of state information requires an additional metric (The exchange timeout window) for detection of WLAN Denial of Service Probe Flood attacks. Variability in this metric has a significant influence on the ability of a detection system to reliably detect the presence of attacks. A parameter selection method is proposed which is shown to provide reliability and repeatability in attack detection in WLANs. Results obtained from ongoing live trials are presented that demonstrate the importance of accurately estimating probe request and probe response timeouts in future Independent Intrusion Detection Systems.
Resumo:
This contains a poster advertising the resources. The resource is a profile folder on five topics, as well as a website, a quiz, and an interactive game.
Resumo:
We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.