913 resultados para Internet of Things, Protocolli e piattaforme IoT, Embedded Systems, Windows IoT Core, Smart City
Resumo:
Information technology (IT) is on the verge of another revolution. Driven by the increasing capabilities and ever declining costs of computing and communications devices, IT is being embedded into a growing range of physical devices linked together through networks and will become ever more pervasive as the component technologies become smaller, faster, and cheaper. [..] These networked systems of embedded computers, referred to as EmNets throughout this report, have the potential to change radically the way people interact with their environment by linking together a range of devices and sensors that will allow information to be collected, shared, and processed in unprecedented ways.[..] The use of EmNets throughout society could well dwarf previous milestones in the information revolution.[..] IT will eventually become \textbf{an invisible component of almost everything} in everyone`s surroundings. Con il ridursi dei costi e l'aumentare della capacità di computazione dei componenti elettronici sono proliferate piattaforme che permettono al bambino come all'ingegnere di sviluppare un'idea che trasversalmente taglia il mondo reale e quello virtuale. Una collisione tra due mondi che fino a poco tempo fa era consentita esclusivamente a professionisti. Oggetti che possono acquisire o estendere funzionalità, che ci permettono di estendere la nostra percezione del mondo e di rivalutarne i suoi limiti. Oggetti connessi alla 'rete delle reti' che condividono ed elaborano dati per un nuovo utilizzo delle informazioni. Con questa tesi si vuole andare ad esplorare l'applicazione degli agenti software alle nuove piattaforme dei sistemi embedded e dell'Internet of Things, tecnologie abbastanza mature eppure non ancora esplorate a fondo. Ha senso modellare un sistema embedded con gli agenti?
Resumo:
Oggigiorno milioni di persone fanno uso di Internet per gli utilizzi più disparati: dalla ricerca di informazioni sul Web al gioco online; dall'invio e ricezione di email all'uso di applicazioni social e tante altre attività. Mentre milioni di dispositivi ci offrono queste possibilità, un grande passo in avanti sta avvenendo in relazione all'uso di Internet come una piattaforma globale che permetta a oggetti di tutti i giorni di coordinarsi e comunicare tra di loro. È in quest'ottica che nasce Internet of Things, l'Internet delle cose, dove un piccolo oggetto come un braccialetto può avere un grande impatto nel campo medico per il monitoraggio da remoto di parametri vitali o per la localizzazione di pazienti e personale e l'effettuazione di diagnosi da remoto; dove un semplice sensore ad infrarosso può allertarci a distanza di una presenza non autorizzata all'interno della nostra abitazione; dove un'autovettura è in grado di leggere i dati dai sensori distribuiti sulla strada. Questa tesi vuole ripercorrere gli aspetti fondamentali di Internet of Things, dai sistemi embedded fino alla loro applicazione nella vita odierna, illustrando infine un progetto che mostra come alcune tecnologie IoT e wearable possano integrarsi nella domotica, come per esempio l'utilizzo di uno smartwatch, come Apple Watch, per il controllo dell'abitazione.
Resumo:
This paper presents a survey on the usage, opportunities and pitfalls of semantic technologies in the Internet of Things. The survey was conducted in the context of a semantic enterprise integration platform. In total we surveyed sixty-one individuals from industry and academia on their views and current usage of IoT technologies in general, and semantic technologies in particular. Our semantic enterprise integration platform aims for interoperability at a service level, as well as at a protocol level. Therefore, also questions regarding the use of application layer protocols, network layer protocols and management protocols were integrated into the survey. The survey suggests that there is still a lot of heterogeneity in IoT technologies, but first indications of the use of standardized protocols exist. Semantic technologies are being recognized as of potential use, mainly in the management of things and services. Nonetheless, the participants still see many obstacles which hinder the widespread use of semantic technologies: Firstly, a lack of training as traditional embedded programmers are not well aware of semantic technologies. Secondly, a lack of standardization in ontologies, which would enable interoperability and thirdly, a lack of good tooling support.
Resumo:
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Resumo:
How to create or integrate large Smart Spaces (considered as mash-ups of sensors and actuators) into the paradigm of ?Web of Things? has been the motivation of many recent works. A cutting-edge approach deals with developing and deploying web-enabled embedded devices with two major objectives: 1) to integrate sensor and actuator technologies into everyday objects, and 2) to allow a diversity of devices to plug to Internet. Currently, developers who want to use this Internet-oriented approach need have solid understanding about sensorial platforms and semantic technologies. In this paper we propose a Resource-Oriented and Ontology-Driven Development (ROOD) methodology, based on Model Driven Architecture (MDA), to facilitate to any developer the development and deployment of Smart Spaces. Early evaluations of the ROOD methodology have been successfully accomplished through a partial deployment of a Smart Hotel.
Resumo:
This research is supported by the UK Research Councils’ Digital Economy IT as a Utility Network+ (EP/K003569/1) and the dot.rural Digital Economy Hub (EP/G066051/1).
Resumo:
This research is supported by the UK Research Councils’ Digital Economy IT as a Utility Network+ (EP/K003569/1) and the dot.rural Digital Economy Hub (EP/G066051/1).
Resumo:
La tesi esplora la co-esistenza di computazioni embodied e disembodied nei moderni sistemi software, adottando come caso di studio il recente trend che vede sempre più coesi e integrati sistemi per l'Internet of Things e sistemi Cloud-based. Si analizzano i principali modelli di comunicazione, protocolli di comunicazione e architetture situate. Inoltre si realizza una piattaforma IoT Middleware cloud-based per mostrare come la computazione possa essere distribuita lato embodied e disembodied.
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.
Resumo:
Trabajo realizado en la empresa ULMA Embedded Solutions
Resumo:
This paper is an overview of some of the implications of IoT on the healthcare field. Due to the increasing of IoT solutions, healthcare cannot be outside of this paradigm. The contribution of this paper is to introduce directions to achieve a global connectivity between the Internet of Things (IoT) and the medical environments. The need to integrate all in a global environment is a huge challenge to all (from electrical engineers to data engineers).This revolution is redesigning the way we see healthcare, from the smallest sensor to the big data collected.
Resumo:
Nowadays, cities deal with unprecedented pollution and overpopulation problems, and Internet of Things (IoT) technologies are supporting them in facing these issues and becoming increasingly smart. IoT sensors embedded in public infrastructure can provide granular data on the urban environment, and help public authorities to make their cities more sustainable and efficient. Nonetheless, this pervasive data collection also raises high surveillance risks, jeopardizing privacy and data protection rights. Against this backdrop, this thesis addresses how IoT surveillance technologies can be implemented in a legally compliant and ethically acceptable fashion in smart cities. An interdisciplinary approach is embraced to investigate this question, combining doctrinal legal research (on privacy, data protection, criminal procedure) with insights from philosophy, governance, and urban studies. The fundamental normative argument of this work is that surveillance constitutes a necessary feature of modern information societies. Nonetheless, as the complexity of surveillance phenomena increases, there emerges a need to develop more fine-attuned proportionality assessments to ensure a legitimate implementation of monitoring technologies. This research tackles this gap from different perspectives, analyzing the EU data protection legislation and the United States and European case law on privacy expectations and surveillance. Specifically, a coherent multi-factor test assessing privacy expectations in public IoT environments and a surveillance taxonomy are proposed to inform proportionality assessments of surveillance initiatives in smart cities. These insights are also applied to four use cases: facial recognition technologies, drones, environmental policing, and smart nudging. Lastly, the investigation examines competing data governance models in the digital domain and the smart city, reviewing the EU upcoming data governance framework. It is argued that, despite the stated policy goals, the balance of interests may often favor corporate strategies in data sharing, to the detriment of common good uses of data in the urban context.
Resumo:
The purpose of this research study is to discuss privacy and data protection-related regulatory and compliance challenges posed by digital transformation in healthcare in the wake of the COVID-19 pandemic. The public health crisis accelerated the development of patient-centred remote/hybrid healthcare delivery models that make increased use of telehealth services and related digital solutions. The large-scale uptake of IoT-enabled medical devices and wellness applications, and the offering of healthcare services via healthcare platforms (online doctor marketplaces) have catalysed these developments. However, the use of new enabling technologies (IoT, AI) and the platformisation of healthcare pose complex challenges to the protection of patient’s privacy and personal data. This happens at a time when the EU is drawing up a new regulatory landscape for the use of data and digital technologies. Against this background, the study presents an interdisciplinary (normative and technology-oriented) critical assessment on how the new regulatory framework may affect privacy and data protection requirements regarding the deployment and use of Internet of Health Things (hardware) devices and interconnected software (AI systems). The study also assesses key privacy and data protection challenges that affect healthcare platforms (online doctor marketplaces) in their offering of video API-enabled teleconsultation services and their (anticipated) integration into the European Health Data Space. The overall conclusion of the study is that regulatory deficiencies may create integrity risks for the protection of privacy and personal data in telehealth due to uncertainties about the proper interplay, legal effects and effectiveness of (existing and proposed) EU legislation. The proliferation of normative measures may increase compliance costs, hinder innovation and ultimately, deprive European patients from state-of-the-art digital health technologies, which is paradoxically, the opposite of what the EU plans to achieve.
Resumo:
The study is divided into two main part: one focused on the GEO Satellite IoT and the other on the LEO Satellite IoT. Concerning the GEO Satellite IoT, the activity has been developed in the context of EUMETSAT Data Collection Service (DCS) by investigating the performance at the receiver within challenging scenarios. DCS are provided by several GEO Satellite operators, giving almost total coverage around the world. In this study firstly an overview of the DCS end-to-end architecture is given followed by a detailed description of both the tools used for the simulations: the DCP-TST (message generator and transmitter) and the DCP-RX (receiver). After generating several test messages, the performances have been evaluated with the addition of impairments (CW and sweeping interferences) and considerations in terms of BER and Good Messages are produced. Furthermore, a study on the PLL System is also conducted together with evaluations on the effectiveness of tuning the PLL Bw on the overall performance. Concerning the LEO Satellite IoT, the activity was carried out in the framework of the ASI Bidirectional IoT Satellite Service (BISS) Project. The elaborate covers a survey about the possible services that the project can accomplish and a technical analysis on the uplink MA. In particular, the LR-FHSS is proved to be a valid alternative for the uplink through an extensive analysis on its Network capacity and through the study of an analytic model for Success Probability with its Matlab implementation.