871 resultados para Internal Transcribed Spacer
Resumo:
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.
Resumo:
In Colombia, five Biomphalaria planorbid species are known: B. kuhniana, B. straminea, B. peregrina, B. canonica and B. oligoza(var. B. philippiana). Among them, B. straminea is intermediate host of Schistosoma mansoni and B. peregrina has been found to be experimentally susceptible to this parasite. B. straminea is commonly confused with B. kuhniana and they have been clustered together with B. intermedia in the complex named B. straminea. The difficulties involved in the specific identification, based on morphological data, have motivated the use of new techniques as auxiliary tools in cases of inconclusive morphological identification of such planorbid. In the present study, five Biomphalaria populations from the Colombian Amazon region and from Interandian Valleys were morphologically identified and characterized by polymerase chain reaction-restriction fragment lenght polymorphism directed at the internal transcribed spacer region of the rRNA gene, followed by digestion of the generated fragment with restriction enzymes (DdeI, AluI, RsaI, MvaI and HaeIII). Known profiles of the Brazilian species B. straminea, B. peregrina, B. kuhniana, B. intermedia and B. amazonica, besides B. kuhniana from Colombia, were used for comparison. The five populations under study were morphologically and molecularly identified as B. kuhniana and B. amazonica.
Resumo:
Due to difficulties concerning morphological identification of planorbid snails of the genus Biomphalaria, and given a high variation of characters and in the organs with muscular tissue, we designed specific polymerase chain reaction (PCR) primers for Brazilian snail hosts of Schistosoma mansoni from available sequences of internal transcribed spacer 2 (ITS2) of the ribosomal RNA gene. From the previous sequencing of the ITS2 region, one primer was designed to anchor in the 5.8S conserved region and three other species-specific primers in the 28S region, flanking the ITS2 region. These four primers were simultaneously used in the same reaction (Multiplex-PCR), under high stringency conditions. Amplification of the ITS2 region of Biomphalaria snails produced distinct profiles (between 280 and 350 bp) for B. glabrata, B. tenagophila and B. straminea. The present study demonstrates that Multiplex-PCR of ITS2-DNAr showed to be a promising auxiliary tool for the morphological identification of Biomphalaria snails, the intermediate hosts of S. mansoni.
Resumo:
Angiostrongylus cantonensis, A. costaricensis, and A. vasorum are etiologic agents of human parasitic diseases. Their identification, at present, is only possible by examining the adult worm after a 40-day period following infection of vertebrate hosts with the third-stage larvae. In order to obtain a diagnostic tool to differentiate larvae and adult worm from the three referred species, polymerase chain reaction-restriction fragment length polymorphism was carried out. The rDNA second internal transcribed spacer (ITS2) and mtDNA cytochrome oxidase I regions were amplified, followed by digestion of fragments with the restriction enzymes RsaI, HapII, AluI, HaeIII, DdeI and ClaI. The enzymes RsaI and ClaI exhibited the most discriminating profiles for the differentiation of the regions COI of mtDNA and ITS2 of rDNA respectively. The methodology using such regions proved to be efficient for the specific differentiation of the three species of Angiostrongylus under study.
Resumo:
From complete mitochondrial DNA sequence of Fasciola hepatica available in Genbank, specific primers were designed for a conserved and repetitive region of this trematode. A pair of primers was used for diagnosis of infected Lymnaea columella by F. hepatica during the pre-patent period simultaneously with another pair of primers which amplified the internal transcribed spacer (ITS) region of rDNA from L. columella in a single Multiplex-PCR. The amplification generated a ladder band profile specific for F. hepatica. This profile was observed in positive molluscs at different times of infection, including adult worms from the trematode. The Multiplex-PCR technique showed to be a fast and safe tool for fascioliasis diagnosis, enabling the detection of F. hepatica miracidia in L. columella during the pre-patent period and identification of transmission areas.
Resumo:
Anopheles (Nyssorhynchus) benarrochi, An. (N.) oswaldoi, and An. (N.) rangeli are the most common anthropophilic mosquitoes in the southern Colombian state of Putumayo. Adult females are most commonly collected in epidemiological studies, and this stage poses significant problems for correct identification, due to overlapping inter-specific morphological characters. Although An. rangeli is easy to identify, the morphological variant of An. benarrochi found in the region and An. oswaldoi are not always easy to separate. Herein we provide a rapid molecular method to distinguish these two species in Southern Colombia. Sequence data for the second internal transcribed spacer (ITS2) region of rDNA was generated for link-reared progeny of An. benarrochi and An. oswaldoi, that had been identified using all life stages. ITS2 sequences were 540 bp in length in An. benarrochi (n = 9) and 531 bp in An. oswaldoi (n = 7). Sequences showed no intra-specific variation and ungapped inter-specific sequence divergence was 6.4%. Species diagnostic banding patterns were recovered following digestion of the ITS2 amplicons with the enzyme Hae III as follows: An. benarrochi (365, 137, and 38 bp) and An. oswaldoi (493 and 38 bp). This polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay provides rapid, accurate, and inexpensive species diagnosis of adult females. This will benefit future epidemiological studies and, as PCR amplification can be achieved using a single mosquito leg, the remaining specimen can be either retained as a morphological voucher or further used in vector incrimination studies. That An. benarrochi comprises a complex of at least two species across Latin America is discussed.
Resumo:
Backgrounds and Aims The spatial separation of stigmas and anthers (herkogamy) in flowering plants functions to reduce self-pollination and avoid interference between pollen dispersal and receipt. Little is known about the evolutionary relationships among the three main forms of herkogamy - approach, reverse and reciprocal herkogamy (distyly) - or about transitions to and from a non-herkogamous condition. This problem was examined in Exochaenium (Gentianaceae), a genus of African herbs that exhibits considerable variation in floral morphology, including the three forms of herkogamy. Methods Using maximum parsimony and maximum likelihood methods, the evolutionary history of herkogamic and non-herkogamic conditions was reconstructed from a molecular phylogeny of 15 species of Exochaenium and four outgroup taxa, based on three chloroplast regions, the nuclear ribosomal internal transcribed spacer (ITS1 and 2) and the 5·8S gene. Ancestral character states were determined and the reconstructions were used to evaluate competing models for the origin of reciprocal herkogamy. Key results Reciprocal herkogamy originated once in Exochaenium from an ancestor with approach herkogamy. Reverse herkogamy and the non-herkogamic condition homostyly were derived from heterostyly. Distylous species possessed pendent, slightly zygomorphic flowers, and the single transition to reverse herkogamy was associated with the hawkmoth pollination syndrome. Reductions in flower size characterized three of four independent transitions from reciprocal herkogamy to homostyly. Conclusions The results support Lloyd and Webb's model in which distyly originated from an ancestor with approach herkogamy. They also demonstrate the lability of sex organ deployment and implicate pollinators, or their absence, as playing an important role in driving transitions among herkogamic and non-herkogamic conditions.
Resumo:
PCR analysis of 16S-23S internal transcribed spacer (PCR ribotyping) and tRNA intergenic spacer (tDNA-PCR) were evaluated for their effectiveness in identification of clinical strains of Klebsiella pneumoniae and differentiation with related species. For this purpose both methods were applied to forty-three clinical isolates biochemically identified as K. pneumoniae subsp. pneumoniae isolated from patients clinical specimens attended at five hospitals in three Brazilian cities. References strains of K. pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae, K. oxytoca, K. planticola and Enterobacter aerogenes were also analyzed. Both PCR methods showed specific patterns for each species. A conserved PCR ribotype pattern was observed for all clinical K. pneumoniae isolates, while differing from other related analyzed species. tDNA-PCR revealed five distinct patterns among the K. pneumoniae clinical isolates studied, demonstrating a predominant group with 90,6% of isolates presenting the same pattern of K. pneumoniae type strain. Both PCR-based methods were not able to differentiate K. pneumoniae subspecies. On the basis of the results obtained, both methods were efficient to differentiate the Klebsiella species analyzed, as well as E. aerogenes. Meanwhile tDNA-PCR revealed different tRNA arrangements in K. pneumoniae, suggesting intra-species heterogeneity of their genome organization, the polymorphism of the intergenic spacers between 16S and 23S rRNA genes appears to be highly conserved whithin K. pneumoniae clinical isolates, showing that PCR ribotyping can be an useful tool for identification of K. pneumoniae isolates.
Resumo:
Despite massive losses of primary forest, the Amazonian rainforest remains an extremely rich source of biodiversity. In recent years, entomopathogenic nematodes (EPNs) have been isolated from soil in various parts of the world and used successfully as biological control agents against numerous insect pests. Therefore, a sampling in the rainforest of Monte Negro, Rondônia, Brazil was conducted with the aim of discovering new strains and/or species of EPNs for future development as biological control agents. From 156 soil samples taken at nine collecting sites, 19 isolates were obtained, all of them belonging to the genus Heterorhabditis. Four strains were subjected to detailed morphological and molecular evaluation. Based on morphometrics and internal transcribed spacer (ITS) sequence data, the strains LPP1, LPP2 and LPP4 were identified as Heterorhabditis indica, whereas LPP7 was considered Heterorhabditis baujardi. Comparative analysis of the ITS1 sequence of H. indica and H. baujardi isolates showed a polymorphic site for the restriction enzyme Tth 111 that could be used to distinguish the two species. Consequently, strains LPP1, LPP2, LPP3, LPP4, and LPP9 were identified as H. indica, whereas LPP5, LPP7, LPP8 and LPP10 were identified as H. baujardi.
Resumo:
Nucleotide sequences of the internal transcribed spacer 2 (ITS2) rDNA and partial sequences of the cytochrome coxidase subunit I (COI) mtDNA and white gene nDNA were obtained from specimens of Anopheles nuneztovari A collected in Macapá (state of Amapá), Óbidos, Prainha and Almeirim (state of Pará), Itacoatiara and Parintins (state of Amazonas), Brazil, and compared with previously published sequences of A. nuneztovari s.l. Results of the Bayesian phylogenetic analyses performed using either COI or combined ITS2, COI and white gene sequences suggest that An. nuneztovari B/C is distinct from specimens obtained in the Amazonas/Solimões River basin. Anopheles goeldii, currently in synonymy with An. nuneztovari, was described from individuals collected in Belterra (= Fordlândia) in the Tapajós River, state of Pará, Southern Amazonas River. Morphological comparisons of the characteristics of the male genitalia indicated that An. nuneztovari A and An. goeldii are similar but distinct from An. nuneztovariB/C by the apex of the aedeagus. In considering the results of the phylogenetic analyses and morphological comparisons, An. goeldii is resurrected from synonymy with An. nuneztovari. Additionally, Anopheles dunhamiis reported for the first time in Parintins. This species can be distinguished from An. goeldiiby characters of the male genitalia and molecular data.
Resumo:
Specific genetic profiles of Brazilian Biomphalaria species were previously standardized by molecular taxonomy through the analysis of restriction fragments, which were generated by digesting the internal transcribed spacer region of rDNA with the DdeI endonuclease. Biomphalaria amazonica displayed three distinct profiles. To investigate these distinct profiles, the same molecular technique, polymerase chain reaction and restriction fragment length polymorphism, was used with different endonucleases. In addition, morphological data were also used to compare B. amazonica specimens that were collected from Brazil, Colombia and Bolivia. The morphological characters of Bolivian molluscs were similar to B. amazonica, displayed a molecular profile of five restriction fragments and morphological data, whereas the Colombian mollusc population showed morphological characters similar to Biomphalaria cousini and a molecular profile of three restriction fragments, similar to B. cousini. The Brazilian specimens showed the B. amazonica and B. cousini molecular profiles as well as a third profile, which resembled a combination of the Colombian and Bolivian molecular profiles.
Resumo:
We present filaria-nested polymerase chain reaction (PCR), which is based on amplification of first internal transcribed spacer rDNA to distinguish three parasitic filarial species (Onchocerca volvulus, Mansonella ozzardiand Mansonella perstans) that can be found in the Amazon Region. Nested PCR-based identifications yielded the same results as those utilizing morphological characters. Nested PCR is highly sensitive and specific and it detects low-level infections in both humans and vectors. No cross-amplifications were observed with various other blood parasites and no false-positive results were obtained with the nested PCR. The method works efficiently with whole-blood, blood-spot and skin biopsy samples. Our method may thus be suitable for assessing the efficacy of filaria control programmes in Amazonia by recording parasite infections in both the human host and the vector. By specifically differentiating the major sympatric species of filaria, this technique could also enhance epidemiological research in the region.
Resumo:
The presence of Anopheles (Nyssorhynchus) dunhami Causey in Colombia (Department of Amazonas) is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI) barcodes and nuclear rDNA second internal transcribed spacer (ITS2) sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.
Resumo:
The morphologically similar taxa Anopheles calderoni, Anopheles punctimacula, Anopheles malefactor and Anopheles guarao are commonly misidentified. Isofamilies collected in Valle de Cauca, Colombia, showed morphological characters most similar to An. calderoni, a species which has never previously been reported in Colombia. Although discontinuity of the postsubcostal pale spots on the costa (C) and first radial (R1) wing veins is purportedly diagnostic for An. calderoni, the degree of overlap of the distal postsubcostal spot on C and R1 were variable in Colombian specimens (0.003-0.024). In addition, in 98.2% of larvae, seta 1-X was located off the saddle and seta 3-C had 4-7 branches in 86.7% of specimens examined. Correlation of DNA sequences of the second internal transcribed spacer and mtDNA cytochrome c oxidase subunit I gene (COI) barcodes (658 bp of the COI gene) generated from Colombian progeny material and wild-caught mosquitoes from Ecuador with those from the Peruvian type series of An. calderoni confirmed new country records. DNA barcodes generated for the closely related taxa, An. malefactor and An. punctimacula are also presented for the first time. Examination of museum specimens at the University of the Valle, Colombia, revealed the presence of An. calderoni in inland localities across Colombia and at elevations up to 1113 m.
Resumo:
An understanding of the taxonomic status and vector distribution of anophelines is crucial in controlling malaria. Previous phylogenetic analyses have supported the description of six species of the Neotropical malaria vector Anopheles (Nyssorhynchus) albitarsis s.l. (Diptera: Culicidae): An. albitarsis, Anopheles deaneorum, Anopheles marajoara, Anopheles oryzalimnetes, Anopheles janconnae and An. albitarsis F. To evaluate the taxonomic status of An. albitarsis s.l. mosquitoes collected in various localities in the Colombian Caribbean region, specimens were analyzed using the complete mitochondrial DNA cytochrome oxidase I (COI) gene, the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region and partial nuclear DNA white gene sequences. Phylogenetic analyses of the COI gene sequences detected a new lineage closely related to An. janconnae in the Caribbean region of Colombia and determined its position relative to the other members of the complex. However, the ITS2 and white gene sequences lacked sufficient resolution to support a new lineage closely related to An. janconnae or the An. janconnae clade. The possible involvement of this new lineage in malaria transmission in Colombia remains unknown, but its phylogenetic closeness to An. janconnae, which has been implicated in local malaria transmission in Brazil, is intriguing.