992 resultados para Intermittent microwave convective heating


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is very energy intensive process and consumes about 20-25% of the energy used by food processing industry. The energy efficiency of the process and quality of dried product are two key factors in food drying. Global energy crisis and demand for quality dried food further challenge researchers to explore innovative techniques in food drying to address these issues. Intermittent drying is considered one of the promising solutions for improving energy efficiency and product quality without increasing the capital cost of the drier. Intermittent drying has already received much attention. However, a comprehensive review of recent progresses and overall assessment of energy efficiency and product quality in intermittent drying is lacking. The objective of this article is to discuss, analyze and evaluate the recent advances in intermittent drying research with energy efficiency and product quality as standpoint. Current available modelling techniques for intermittent drying are reviewed and their merits and demerits are analyzed. Moreover, intermittent application of ultrasound, infrared (IR) and microwave in combined drying technology have been reviewed and discussed. In this review article the gaps in the current literature are highlighted, some important future scopes for theoretical and experimental studies are identified and the direction of further research is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of meso-formyl derivatives of 5,15-diaryl- and 5,10,15-triphenylporphyrin (and their nickel(II) complexes) to the corresponding meso-methyl porphyrins is achieved in high yield by microwave heating of the substrate in dimethylformamide (DMF) in the presence of acids such as trifluoroacetic acid, or even just with added water. The reactions are complete in less than 30 min at 250 °C. The reaction is strongly suppressed in very dry DMF in the absence of added acid. The meso-hydroxymethyl porphyrins are also reduced to the methyl derivatives, suggesting the primary alcohols may be intermediates in the exhaustive reduction. UV-visible spectra taken at intervals during reaction at 240 °C indicated that at least one other intermediate is present, but it was not identified. In d7-DMF, the methylporphyrin isolated was mainly Por-CD2H, showing that both of the added hydrogens arise from the solvent, and not from the added water or acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes the sensitivity of the simulated precipitation to changes in convective relaxation time scale (TAU) of Zhang and McFarlane (ZM) cumulus parameterization, in NCAR-Community Atmosphere Model version 3 (CAM3). In the default configuration of the model, the prescribed value of TAU, a characteristic time scale with which convective available potential energy (CAPE) is removed at an exponential rate by convection, is assumed to be 1 h. However, some recent observational findings suggest that, it is larger by around one order of magnitude. In order to explore the sensitivity of the model simulation to TAU, two model frameworks have been used, namely, aqua-planet and actual-planet configurations. Numerical integrations have been carried out by using different values of TAU, and its effect on simulated precipitation has been analyzed. The aqua-planet simulations reveal that when TAU increases, rate of deep convective precipitation (DCP) decreases and this leads to an accumulation of convective instability in the atmosphere. Consequently, the moisture content in the lower-and mid-troposphere increases. On the other hand, the shallow convective precipitation (SCP) and large-scale precipitation (LSP) intensify, predominantly the SCP, and thus capping the accumulation of convective instability in the atmosphere. The total precipitation (TP) remains approximately constant, but the proportion of the three components changes significantly, which in turn alters the vertical distribution of total precipitation production. The vertical structure of moist heating changes from a vertically extended profile to a bottom heavy profile, with the increase of TAU. Altitude of the maximum vertical velocity shifts from upper troposphere to lower troposphere. Similar response was seen in the actual-planet simulations. With an increase in TAU from 1 h to 8 h, there was a significant improvement in the simulation of the seasonal mean precipitation. The fraction of deep convective precipitation was in much better agreement with satellite observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several vanadium, tungsten, and molybdenum oxide bronzes have been prepared using microwave irradiation. Metal oxides and alkali metal iodides were used as starting materials, Intermittent grinding and inert atmosphere were found to be necessary for the synthesis of most of the bronzes, The reaction temperatures are remarkably lower than those employed for conventional synthetic techniques and the microwave assisted reactions proceed at extremely fast rates. The microwave synthesized bronzes consist of particles having long, rectangular rod-like morphology. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural ventilation of a well-mixed, pre-heated room with a point source of heating, and openings at the base and roof is investigated. The transient draining associated with the room being warmer than the exterior combined with the convective ow produced by the point source of heat leads to a fascinating series of transient ow regimes as the system evolves to the two-layer steady-state regime described by Linden, Lane-Ser_ and Smeed [1]. As the room begins to ventilate, a turbulent plume rises from the point source of heat to the ceiling, and typically forms a deepening layer of hot air. However, with a weak heat source, then at some point the ascending plume will intrude beneath the layer of original uid. Otherwise, the ascending plume always reaches the top of the room as the system evolves to a steady state. We develop a simpli_ed model of the transient evolution and test this with some new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microwave scattering properties of an axially magnetized afterglow plasma column in an S-band waveguide have been investigated experimentally. The column axis is perpendicular to the electric field and the direction of wave propagation in the H_(10)-mode waveguide. Strong absorption is found in the range of upper hybrid frequencies, ω_c ≤ ω ≤ [ω^2_c + ω^2_p(r,t)]^(1/2) where ω_c is the electron cyclotron frequency and ω_p is the locally and temporally varying electron plasma frequency. With the high absorption the noise emission approaches the blackbody limit. A microwave radiometer has been used to measure the noise power and with a comparison and null-technique the electron temperature. As emission and absorption are largely confined to a resonant layer, spatially resolved temperature data are obtained. Time resolution is obtained by gating the radiometer. The peak electron density is derived from the emission or absorption onset at the maximum upper hybrid frequency and confirmed by independent measurements. With this diagnostic technique the electron density and temperature decay has been studied under a variety of experimental conditions. Ambipolar diffusion and collisional cooling essentially account for the plasma decay, but impurities and metastable ions play an important role. The diagnostic method is successfully applied in a microwave heating experiment. The existence of absorbing resonant layers is shown by a peak in the radial temperature profile where the local upper hybrid frequency equals the heating frequency. The knowledge of the plasma parameters is important in the study of hot plasma effects. Buchsbaum-Hasegawa modes are investigated in a wide range of magnetic fields (.5 < ω_c/ω < .985).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature profile of fish chikuwa was taken during microwave cooking at 100 power level for different durations and subjected to organoleptic evaluation. Moisture content and organoleptic quality of fish chikuwa paste mixed with different levels of moisture and cooked at 100 power levels for 6 minutes were analysed. Microwave cooked fish chikuwa with standardized recipe was heated in microwave oven with hot air at different temperature for different durations. Fish chikuwa microwave cooked at 100 power level for 6 minutes had higher scores for all attributes as compared to those cooked for different durations and also fulfill the condition of pasteurisation of fish chikuwa. Fish chikuwa prepared with 35% moisture had better scores for all attributes unlike those of other levels. Heating of microwave pasteurised fish chikuwa at different temperatures for different durations could not achieve the desired brown colour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas hydrate (NGH) reservoirs have been considered as a substantial future clean energy resource and how to recover gas from these reservoirs feasibly and economically is very important. Microwave heating will be taken as a promising method for gas production from gas hydrates for its advantages of fast heat transfer and flexible application. In this work, we investigate the formation/decomposition behavior of natural gas hydrate with different power of microwave (2450MHZ), preliminarily analyze the impact of microwave on phase equilibrium of gas hydrate,and make calculation based on van der Waals-Platteeuw model. It is found that microwave of a certain amount of power can reduce the induction time and sub-cooling degree of NGH formation, e.g., 20W microwave power can lead to a decrease of about 3A degrees C in sub-cooling degree and the shortening of induction time from 4.5 hours to 1.3 hours. Microwave can make rapid NGH decomposition, and water from NGH decomposition accelerates the decomposition of NGH with the decomposition of NGH. Under the same pressure, microwave can increase NGH phase equilibrium temperature. Different dielectric properties of each composition of NGH may cause a distinct difference in temperature in the process of NGH decomposition. Therefore, NGH decomposition by microwave can be affected by many factors.