99 resultados para Intergranular
Resumo:
Se analizan los materiales de la mampostería de “piedra de ojo” de las viviendas del casco histórico de Maracaibo con fines de reposición y de conservación. Se expone la metodología del análisis petrofísico a partir de probetas para determinar los componentes y las propiedades escalares, mediante la inspección visual, difracción de rayos X, microscopía óptica de transmisión, porosimetría, así como medición ultrasónica y ensayos mecánicos. Los resultados demuestran que la piedra procedente de la formación “El Milagro”, es una grauvaca ferruginosa, de color rojizo, con abundante porosidad (huecos) de tipo móldico, fenestral, e intergranular apreciable a simple vista y que sustenta la denominación popular de “piedra de ojo” . Presenta una baja succión capilar, densidad aparente de 2.889 kg/m 3 y una baja resistencia a compresión, no llega a 5 MPa, disminuyendo considerablemente en húmedo y condicionada por las cargas orientadas, tanto en paralelo o perpendicular a la superficie de estratificación.
Resumo:
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares.
Resumo:
O desenvolvimento dos aços inoxidáveis Super-Martensíticos (SM) nasce da necessidade de implementar novas tecnologias, mais econômicas e amigáveis ao meio ambiente. Os aços inoxidáveis SM são uma derivação dos aços inoxidáveis martensíticos convencionais, diferenciando-se basicamente no menor teor de carbono, na adição de Ni e Mo. Foram desenvolvidos como uma alternativa para aços inoxidáveis duplex no uso de dutos para a extração de petróleo offshore em meados dos anos 90. Para que esses aços apresentem as propriedades mecânicas de resistência à tração e tenacidade é necessário que sejam realizados tratamentos de austenitização, seguido de têmpera, e de revenimento, onde, particularmente para este último, há várias opções de tempos e temperaturas. Como os tratamentos térmicos geram as propriedades mecânicas através de transformações de fase (precipitação) podem ocorrer alterações da resistência à corrosão. São conhecidos os efeitos benéficos da adição de Nb em aços inoxidáveis tradicionais. Por isso, o objetivo desta pesquisa foi estudar aços inoxidáveis SM contendo Nb. Foi pesquisada a influência da temperatura de revenimento sobre a resistência à corrosão de três aços inoxidáveis SM, os quais contêm 13% Cr, 5% Ni, 1% a 2% Mo, com e sem adições de Nb. No presente trabalho, foram denominados de SM2MoNb, SM2Mo e SM1MoNb, que representam aços com 2% Mo, 1% Mo e 0,11% Nb. Dado que os principais tipos de corrosão para aços inoxidáveis são a corrosão por pite (por cloreto) e a corrosão intergranular (sensitização), optou-se por determinar os Potenciais de Pite (Ep) e os Graus de Sensitização (GS) em função da temperatura de revenimento. Os aços passaram por recozimento a 1050°C por 48 horas, para eliminação de fase ferrita delta. Em seguida foram tratados a 1050 °C por 30 minutos, com resfriamento ao ar, para uniformização do tamanho de grão. A estrutura martensítica obtida recebeu tratamentos de revenimento em temperaturas de: 550 °C, 575 °C, 600 °C, 625 °C, 650 °C e 700 °C, por 2 horas. O GS foi medido através da técnica de reativação eletroquímica potenciodinâmica na versão ciclo duplo (DL-EPR), utilizando-se eletrólito de 1M H2SO4 + 0,01M KSCN. Para determinar o Ep foram realizados ensaios de polarização potenciodinâmica em 0,6M NaCl. Os resultados obtidos foram discutidos através das variações microestruturais encontradas. Foram empregadas técnicas de microscopia ótica (MO), microscopia eletrônica de varredura (MEV), simulação termodinâmica de fases através do programa Thermo-Calc e determinação de austenita revertida mediante difração de raios X (DRX) e ferritoscópio. A quantificação da austenita por DRX identificou que a partir de 600 °C há formação desta fase, apresentando máximo em 650 °C, e novamente diminuindo para zero a 700 °C. Por sua vez, o método do ferritoscópio detectou austenita nas condições em que a analise de DRX indicou valor nulo, sendo as mais críticas a do material temperado (sem revenimento) e do aço revenido a 700 °C. Propõe-se que tais diferenças entre os dois métodos se deve à morfologia fina da austenia retida, a qual deve estar localizada entre as agulhas de martensita. Os resultados foram discutidos em termos da precipitação de Cr23C6, Mo6C, NbC, fase Chi, austenita e ferrita, bem como das consequências do empobrecimento em Cr e Mo, gerados por tais microconstituintes. São propostos três mecanismos para explicar a sensitização: o primeiro é devido a precipitação de Cr23C6, o segundo a precipitação de fase Chi (rica em Cr e Mo) e o terceiro é devido a formação de ferrita durante o revenimento. O melhor desempenho quanto ao GS foi obtido para os revenimentos a 575 °C e 600°C, por 2 horas. Os resultados de Ep indicaram que o aço SM2MoNb, revenido a 575°C, tem o melhor desempenho quanto à resistência à corrosão por cloreto. Isso associado ao baixo GS coloca este aço, com este tratamento térmico, numa posição de destaque para aplicações onde a resistência à corrosão é um critério de seleção de material, uma vez que, segundo a literatura a temperatura de 575 °C está no intervalo de temperaturas de revenimento onde são obtidas as melhores propriedades mecânicas.
Resumo:
We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20–100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.
Resumo:
Numerous structural features occur in the Leg 128 cores from the Japan Sea. They include (1) gravity-induced structures such as slump folds, (2) dewatering structures comprising several sets of veins, and (3) larger faults and veins developed in the volcanic basement of the Yamato Basin as well as in the sedimentary rocks of the Oki Ridge and Kita-Yamato Trough. Gravity-induced structures, mainly slumps and associated faults, suggest the existence of paleoslopes and the dominance of gravitational tectonics during the early and middle Miocene, at the Pliocene/Pleistocene boundary, and during the Quaternary. Several types of mud-filled veins having various shapes were observed. These are especially abundant in the middle Miocene siliceous claystones and porcellanites from the Kita-Yamato Trough. They have been interpreted as dewatering conduits that formed preferentially in highly porous, water-saturated diatomaceous muds on a slope, because of episodic loss of sediment strength, collapse of the sediment framework, and consequent fluid migration. The central part of the vein serves once as a fluid conduit, whereas the transition between conduit-controlled and intergranular flow occurs at the branching extremities, with concentration of fines. The likely trigger responsible for the strength loss is seismic activity. Development of these veins, spatially and chronologically linked to small normal microfaults, implies an extensional regime having layer-parallel extension and a local bedding-parallel shear couple, probably the result of gravitational gliding. The brittle fractures found in Yamato Basin basement Hole 794D cores comprise joints, faults, and veins filled with chlorite-saponite, saponite, and calcite. They suggest a likely transpressive to transtensional regime around the early Miocene/ middle Miocene boundary, with a north-northeast-south-southwest compression alternating with a west-northwest-eastsoutheast extension. The faults from Site 799 cores on the Yamato Rise exhibit a prominent early Miocene-middle Miocene extensional environment, a late Miocene-early Pliocene phase of normal and strike-slip faulting, and a final phase that began during the latest Pliocene. Site 798, on the Oki Ridge, reveals faults that recorded a consistent extensional tectonic regime from Pliocene to the Holocene. These data support the pull-apart kinematic model for early Miocene-middle Miocene time, as regarding the stress regime deduced from the Yamato Basin basement fractures. The recent compression known in the eastern margin of the Japan Sea was not documented by compressive structures at any site. The late Miocene-early Pliocene faulting phase corresponds to a major and general reorganization of the stress distribution in the arc area. Evidence for rapid and main subsidence and synsedimentary extension of the Yamato Basin and Yamato Rise areas between 20 and 15 Ma, and the concomitant rotation of southwest Japan, raise the question of links between this opening and the Shimanto Belt collision in southwest Japan, between the arc and the Philippine Sea Plate.
Resumo:
Basalts in Hole 648B, located in the rift valley of the Mid-Atlantic Ridge at 23°N in crust estimated to be less than 100,000 years old, are mainly fresh, but small amounts of secondary phases are found on fracture surfaces and in alteration halos within the rocks. The halos are defined by dark bands 1-4 mm thick that have developed parallel to fracture surfaces or pillow margins and which in some cases have migrated some centimeters into the rock. The dark bands are the principal locus of secondary phases. The secondary phases are olive-green and yellow protoceladonites, of composition and structure intermediate between celadonite and iron-rich saponite, red (Mn-poor) to opaque (Mn-rich) iron oxyhydroxides, mixtures of protoceladonite and iron oxyhydroxide, and rare manganese oxides. These phases occur mainly as linings or fillings of open spaces in the basalt within the dark bands. Sulfides and intersertal glass are the only primary phases that can be seen to have been altered. Where dark bands have migrated into the rock, the rock behind the advancing band is almost devoid of secondary phases, implying redissolution. The potassium and magnesium in the secondary phases could have been supplied from ambient seawater. The aluminum in the protoceladonites must have been derived from local reaction of intergranular glass. The source of iron and silica could have been intergranular glass or low temperature mineralizing solutions of the type responsible for the formation of deposits of manganese oxides and iron oxyhydroxides and silicates on the seafloor.
Resumo:
Grain boundaries (GBs), particularly ferrite: ferrite GBs, of X70 pipeline steel were characterized using analytical electron microscopy (AEM) in order to understand its intergranular stress corrosion cracking (IGSCC) mechanism(s). The microstructure consisted of ferrite (alpha), carbides at ferrite GBs, some pearlite and some small precipitates inside the ferrite grains. The precipitates containing Ti, Nb, V and N were identified as complex carbo-nitrides and designated as (Ti, Nb, WC, N). The GB carbides occurred (1) as carbides along ferrite GBs, (2) at triple points, and (3) at triple points and extending along the three ferrite GBs. The GB carbides were Mn rich, were sometimes also Si rich, contained no micro-alloying elements (Ti, Nb, V) and also contained no N. It was not possible to measure the GB carbon concentration due to surface hydrocarbon contamination despite plasma cleaning and glove bag transfer from the plasma cleaner to the electron microscope. Furthermore, there may not be enough X-ray signal from the small amount of carbon at the GBs to enable measurement using AEM. However, the microstructure does indicate that carbon does segregate to alpha : alpha GBs during microstructure development. This is particularly significant in relation to the strong evidence in the literature linking the segregation of carbon at GBs to IGSCC. It was possible to measure all other elements of interest. There was no segregation at alpha : alpha GBs, in particular no S, P and N, and also no segregation of the micro-alloying elements, Ti, Nb and V. (C) 2003 Kluwer Academic Publishers.
Resumo:
The initiation of stress corrosion cracking (SCC) was studied using scanning electron microscope observations of linearly increasing stress test specimens. SCC initiation from the following surfaces was studied: (i) initiation from the commercial pipe surface covered by the Zn coating, (ii) initiation from a mechanically polished surface with a deformed layer, and (iii) initiation from an electro-polished surface. SCC initiation involved different features for these surfaces as follows. (i) For the Zn coated commercial pipe surface, a crack in the Zn coating led to the dissolution of the deformed layer and when the deformed layer was penetrated, intergranular SCC initiation became possible. (ii) For a mechanically polished surface with a deformed layer, cracks in the surface oxide concentrated the anodic dissolution to such an extent that there was transgranular SCC in the deformed layer. SCC was intergranular when the deformed layer had been penetrated. Transgranular stress corrosion cracks were stopped at ferrite grain boundaries (GBs) oriented perpendicular to the SCC propagation direction. (iii) For an electro-polished surface, the surface oxide film was cracked at many locations, but intergranular SCC only propagated into the steel when the oxide crack corresponded to a GB. An oxide crack away from a GB is expected to be healed. The observed SCC initiation mechanism was not associated with simple preferential chemical attack of the ferrite GBs. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Stress corrosion cracks (SCC) had been found in a natural gas transmission pipeline during a dig-up and inspection program. The question was raised as to whether the SCC was active or dormant. This paper describes the resultant investigation to determine if a particular service crack was actively growing. The strategy adopted was to assess the appearance of the fracture surface of the service crack and to compare with expectations from laboratory specimens with active SCC. The conclusions from this study are as follows. To judge whether a crack in the service pipe is active or dormant, it is reasonable to compare the very crack tip of the service crack and a fresh crack in a laboratory sample. If the crack tip of the active laboratory sample is similar to that of the service pipe, it means the crack in the service pipe is likely to be active. From the comparison of the crack tip between the service pipe and the laboratory samples, it appears likely that the cracks in the samples extracted from service were most likely to have been active intergranular stress corrosion cracks. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Pure limestones beneath the paleosols on San Salvador Island, Bahamas, contain strong positive magnetic susceptibility anomalies, although the iron content is generally very low. These magnetic phenomena differ from those associated with disconformities, which are marked by accumulation of paramagnetic airborne dust deposits with relatively high iron content. The strength and characters of the magnetic response in these subsurface zones correspond to the presence of magnetite, particularly small single-domain magnetite crystals of microbial origin. These crystals are not present elsewhere in the intergranular rock pores or microvugs. They are preferentially concentrated in capillary microborings, which developed concurrently with formation of calcite cements that have soil-related C and O isotope compositions. These magnetic zones occur several meters below the overlying soil horizons. Very thin and long linear microborings may be attributable to cyanobacterial microborers. The single-domain magnetites in these micrometer-size tunnels plugged by calcite appear to result from later occupation of these tiny holes by magnetotactic bacteria. Inorganic origin of the magnetite seems unlikely. Numerous traces that suggest subsurface microbial activity provide evidence that may be used to develop possible scenarios for subsequent biological studies of the precise bacteria involved.
Resumo:
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
Resumo:
Nine samples of supergene goethite (FeOOH) from Brazil and Australia were selected to rest the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 61 to 8 Ma and were reproducible to better than a few percent despite very large Variations in [U] and [Th]. In all Samples with internal stratigraphy or independent age constraints, the He ages corroborated the expected relationship's. These data demonstrate that internally consistent He ages can be obtained on goethite. but do not prove quantitative 4 He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic He-3. The He-3 release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for similar to 5% of He-3, contains no natural He-4 and may represent poorly crystalline or intergranular material which has lost all radiogenic He-4 by diffusion in nature. Diffusive loss of He-3 from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The He-2/He-3 evolution during the incremental heating experiments shows that the high retentivity domain has retained 90%-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. Considering both the high and low retentivity domains, these data indicate that one of the samples retained 90% of its radiogenic He-4 over 47.5 Ma and the other retained 86% over 12.3 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required. these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation He-4/He-3 method. Copyright (C) 2005 Elsevier Ltd.
Resumo:
Hydrothermally altered shock-metamorphosed gneisses consisting of relic igneous biotite-K-feldspor-Na-rich alkali feldspar - plagioclase - quartz assemblages ( accessory garnet, corundum, titanite, monazite, zircon), and showing extensive replacement by montmorillonite, illite, sericite, and to a lesser extent chlorite, calcite, epidote, zoisite and pyrite, occur in the basement core uplift of the Woodleigh impact structure, Western Australia. The rocks display extensive hydrothermal clay alteration, complicating identification of pre-hydrothermal and pre-impact textures and compositions. Analysis of quartz-hosted planar deformation features (PDFs) indicates a majority of indexed sets parallel to omega{10 (1) over bar3}, a lesser abundance of sets parallel to pi{10 (1) over bar2}, and some sets parallel to the basal plane (0001) and r,z {10 (1) over bar1}, consistent with pressures about or over 20 GPa. Feldspar-hosted FDFs form reticulate vein networks displaying checkerboard-like to irregular and serrated patterns attributable to preferential replacement of shock-damaged PDFs and/or perthitic twin lamella by clay minerals. The gneisses are pervaded by clay-dominated intergranular and intragranular veins of cryptocrystalline material that display marked departures from bulk-rock chemistry and from mineral compositions. XRD analysis identifies the cryptocrystalline components as illite - montmorillonite, illite and chlorite, while laser Raman analysis identifies high-fluorescence sub-micrometre clay assemblage, feldspar, quartz and minor mica. SEM/EDS-probe and laser-ICPMS analysis indicate low-K high-Mg clay mineral compositions consistent with montmorillonite. Quartz PDF-hosted cryptocrystalline laminae display distinct enrichments in Al, Mg, Ca and K. Altered intergranular veins and feldspar-hosted cryptocrystalline components show consistent enrichment in the relatively refractory elements (Al, Cc, Mg, Fe) and depletion in relatively volatile elements (Si, K, Na). The clay alteration retards determination whether clay-dominated vein networks represent altered shock-induced pseudotachylite veins, diaplectic zones and/or shock-damaged twin lamella, and/or result from purely mineralogical and chemical differentiation affected by hydrothermal fluids, Overall enrichment of the shocked gneiss and of the cryptocrystalline components in Mg and trace ferromagnesian elements (Ni, Cc, Cr) may be attributed alternatively to introduction of siderophile element-rich fluid from the projectile, or/and contamination of hydrothermal fluids by MgO from dolomites surrounding the basement uplift. High Ni/Co and Ni/Cr and anomalous DGE (platinum group elements) may support the former model.
Resumo:
Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ten samples of supergene goethite (FeOOH) from Brazil and Australia were selected to test the suitability of this mineral for (U-Th)/He dating. Measured He ages ranged from 8 to 61 Ma, and were reproducible to better than a few percent despite very large variations in [U] and [Th]. In all samples with internal stratigraphy or independent age constraints, the He ages honored the expected relationships. These data demonstrate that internally consistent He ages can be obtained on goethite, but do not prove quantitative 4He retention. To assess possible diffusive He loss, stepped-heating experiments were performed on two goethite samples that were subjected to proton irradiation to produce a homogeneous distribution of spallogenic 3He. The 3He release pattern indicates the presence of at least two diffusion domains, one with high helium retentivity and the other with very low retentivity at Earth surface conditions. The low retentivity domain, which accounts for ~ 5% of 3He, contains no natural 4He, and may represent poorly crystalline or intergranular material which has lost all radiogenic 4He by diffusion in nature. Diffusive loss of 3He from the high retentivity domain is independent of the macroscopic dimensions of the analyzed polycrystalline aggregate, so probably represents diffusion from individual micrometer-size goethite crystals. The 4He/3He evolution during the step heating experiments shows that the high retentivity domain has retained 90-95% of its radiogenic helium. This degree of retentivity is in excellent agreement with that independently predicted from the helium diffusion coefficients extrapolated to Earth surface temperature and held for the appropriate duration. These data indicate that one of the samples retained 90% of its radiogenic 4He over 46.8 Ma and the other retained 86% over 11.9 Ma. Thus while diffusive-loss corrections to supergene goethite He ages are required, these initial results indicate that the corrections are not extremely large and can be rigorously quantified using the proton-irradiation 4He/3He method.