938 resultados para Interfacial charging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer) waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction. Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory agreement is achieved with the existing asymptotical theories. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benard-Marangoni convections of two-layer fluids heated from the bottom are investigated experimentally with a particle imagine velocimetry. The flows are visualized from the side, and various velocity fields near the onset of convection, such as three-layer vortex convective patterns, are observed when the depth ratio varies in a wide range. A new classification of the convective patterns is proposed with more detail than in previous studies. The analysis of the results indicates that the interface tension greatly influences the motion intensities of the bottom and top layers. The dimensionless wave number increases with the Bond number when the motion in the top layer is not more intense than that in the bottom layer, which agrees with the theoretical prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90 degrees, 135 degrees and 180 degrees were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curvature-stress relation is studied for a film-substrate bilayer with the effect of interfacial slip and compared with that of an ideal interface without interfacial slip. The interfacial slip together with the dimensions, elastic and interfacial properties of the film and substrate layers can cause a significant deviation of curvature-stress relation from that with an ideal interface. The interfacial slip also results in the so-called free edge effect that the stress, constraint force, and curvature vary dramatically around the free edges. The constant curvature as predicted by Stoney's formula and the Timoshenko model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The models with the assumption of an ideal interface can also lead to an erroneous evaluation on the true stress state inside a bilayer with a nonideal interface. The extended Stoney's formula incorporating the effects of both the layer dimensions and interfacial slip is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermally induced interfacial delamination problem of a segmented coating is investigated using finite element method (FEM). The coating-substrate system, modeled as a coated semi-infinite medium with periodic segmentation cracks within coating, is assumed to be exposed to convective cooling from surface. The failure criterion based on the interfacial fracture toughness is adopted, in which the energy release rate for an interface crack is considered to be the driving force for interfacial delamination extension. The results confirm that a segmented coating has higher delamination resistance than an intact one under the same thermal transients, as the segmentation crack spacing is smaller than a critical value. Based on dimensional analysis, sensitivity analyses of the crack driving force are also obtained as a function of various dimensionless parameters such as time, convection severity and material constants. These results may provide some helpful references for the integrity of coating-substrate systems under thermal loading. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements and inverse analysis to determine the interfacial mechanical parameters for the metal film/ceramic system are performed, considering that there exist an epoxy interface layer between film and ceramic. In the present investigation, Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90, 135 and 180 degrees are considered. A finite element model with the cohesive zone elements is used to simulate the peel test process. The finite element results are taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present study, effect of interfacial heat transfer with ambient gas on the onset of oscillatory convection in a liquid bridge of large Prandtl number on the ground is systematically investigated by the method of linear stability analyses. With both the constant and linear ambient air temperature distributions, the numerical results show that the interfacial heat transfer modifies the free-surface temperature distribution directly and then induces a steeper temperature gradient on the middle part of the free surface, which may destabilize the convection. On the other hand, the interfacial heat transfer restrains the temperature disturbances on the free surface, which may stabilize the convection. The two coupling effects result in a complex dependence of the stability property on the Biot number. Effects of melt free-surface deformation on the critical conditions of the oscillatory convection were also investigated. Moreover, to better understand the mechanism of the instabilities, rates of kinetic energy change and "thermal" energy change of the critical disturbances were investigated (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.

Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.

The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.

Part II

Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.