948 resultados para Intercept distribution and mean free path.
Resumo:
Identifying cloud interference in satellite-derived data is a critical step toward developing useful remotely sensed products. Most MODIS land products use a combination of the MODIS (MOD35) cloud mask and the 'internal' cloud mask of the surface reflectance product (MOD09) to mask clouds, but there has been little discussion of how these masks differ globally. We calculated global mean cloud frequency for both products, for 2009, and found that inflated proportions of observations were flagged as cloudy in the Collection 5 MOD35 product. These erroneously categorized areas were spatially and environmentally non-random and usually occurred over high-albedo land-cover types (such as grassland and savanna) in several regions around the world. Additionally, we found that spatial variability in the processing path applied in the Collection 5 MOD35 algorithm affects the likelihood of a cloudy observation by up to 20% in some areas. These factors result in abrupt transitions in recorded cloud frequency across landcover and processing-path boundaries impeding their use for fine-scale spatially contiguous modeling applications. We show that together, these artifacts have resulted in significantly decreased and spatially biased data availability for Collection 5 MOD35-derived composite MODIS land products such as land surface temperature (MOD11) and net primary productivity (MOD17). Finally, we compare our results to mean cloud frequency in the new Collection 6 MOD35 product, and find that landcover artifacts have been reduced but not eliminated. Collection 6 thus increases data availability for some regions and land cover types in MOD35-derived products but practitioners need to consider how the remaining artifacts might affect their analysis.
Resumo:
This study is aimed at determining the spatial distribution, physical properties, and groundwater conditions of the Vashon advance outwash (Qva) in the Mountlake Terrace, WA area. The Qva is correlative with the Esperance Sand, as defined at its type section; however, local variations in the Qva are not well-characterized (Mullineaux, 1965). While the Qva is a dense glacial unit with low compressibility and high frictional shear strength (Gurtowski and Boirum, 1989), the strength of this unit can be reduced when it becomes saturated (Tubbs, 1974). This can lead to caving or flowing in excavations, and on a larger scale, can lead to slope failures and mass-wasting when intersected by steep slopes. By studying the Qva, we can better predict how it will behave under certain conditions, which will be beneficial to geologists, hydrogeologists, engineers, and environmental scientists during site assessments and early phases of project planning. In this study, I use data from 27 geotechnical borings from previous field investigations and C-Tech Corporation’s EnterVol software to create three-dimensional models of the subsurface geology in the study area. These models made it possible to visualize the spatial distribution of the Qva in relation to other geologic units. I also conducted a comparative study between data from the borings and generalized published data on the spatial distribution, relative density, soil classification, grain-size distribution, moisture content, groundwater conditions, and aquifer properties of the Qva. I found that the elevation of the top of the Qva ranges from 247 to 477 ft. I found that the Qva is thickest where the modern topography is high, and is thinnest where the topography is low. The thickness of the Qva ranges from absent to 242 ft. Along the northern, east-west trending transect, the Qva thins to the east as it rises above a ridge composed of Pre- Vashon glacial deposits. Along the southern, east-west trending transect, the Qva pinches out against a ridge composed of pre-Vashon interglacial deposits. Two plausible explanations for this ridge are paleotopography and active faulting associated with the Southern Whidbey Fault Zone. Further investigations should be done using geophysical methods and the modeling methods described in this study to determine the nature of this ridge. The relative density of the Qva in the study area ranges from loose to very dense, with the loose end of the spectrum probably relating to heave in saturated sands. I found subtle correlations between density and depth. Volumetric analysis of the soil groups listed in the boring logs indicate that the Qva in the study area is composed of approximately 9.5% gravel, 89.3% sand, and 1.2% silt and clay. The natural moisture content ranges from 3.0 to 35.4% in select samples from the Qva. The moisture content appears to increase with depth and fines content. The water table in the study area ranges in elevation from 231.9 to 458 ft, based on observations and measurements recorded in the boring logs. The results from rising-head and falling-head slug tests done at a single well in the study area indicate that the geometric mean of hydraulic conductivity is 15.93 ft/d (5.62 x 10-03 cm/s), the storativity is 3.28x10-03, and the estimated transmissivity is 738.58 ft2/d in the vicinity of this observation well. At this location, there was 1.73 ft of seasonal variation in groundwater elevation between August 2014 and March 2015.
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
This work has demonstrated that for the first time a single RAFT agent (i. e., difunctional) can be used in conjunction with a radical initiator to obtain a desired M-n and PDI with controlled rates of polymerization. Simulations were used not only to verify the model but also to provide us with a predictive tool to generate other MWDs. It was also shown that all the MWDs prepared in this work could be translated to higher molecular weights through chain extension experiments with little or no compromise in the control of end group functionality. The ratio of monofunctional to difunctional SdC(CH2Ph)S- end groups, XPX and XP (where X) S=C(CH2Ph) S-), can be controlled by simply changing the concentration of initiator, AIBN. Importantly, the amount of dead polymer is extremely low and fulfils the criterion as suggested by Szwarc (Nature 1956) that to meet living requirements nonfunctional polymeric species formed by side reactions in the process should be undetectable by analytical techniques. In addition, this novel methodology will allow the synthesis of AB, ABA, and statistical multiblock copolymers with predetermined ratios to be produced in a one-pot reaction.
Resumo:
Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.
Resumo:
In this work, the angular distributions for elastic and. inelastic scattering of fast neutrons in fusion .reactor materials have been studied. Lithium and lead material are likely to be common components of fusion reactor wall configuration design. The measurements were performed using an associated particle time-of- flight technique. The 14 and 14.44 Mev neutrons were produced by the T(d,n} 4He reaction with deuterons being accelerated in a 150kev SAMES type J accelerator at ASTON and in.the 3. Mev DYNAMITRON at the Joint Radiation Centre, Birmingham respectively. The associated alpha-particles and fast. neutrons were detected.by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The samples used were extended flat plates of thicknesses up to 0.9 mean-free-path for Lithium and 1.562 mean-free-path for Lead. The differential elastic scattering cross-sections were measured for 14 Mev neutrons for various thicknesses of Lithium and Lead in the angular range from zero to; 90º. In addition, the angular distributions of elastically scattered 14,.44 Mev .neutrons from Lithium samples were studied in the same angular range. Inelastic scattering to the 4.63 Mev state in 7Li and the 2.6 Mev state, and 4.1 Mev state in 208Pb have:been :measured.The results are compared to ENDF/B-IV data files and to previous measurements. For the Lead samples the differential neutron scattering:cross-sections for discrete 3 Mev ranges and the angular distributions were measured. The increase in effective cross-section due to multiple scattering effects,as the sample thickness increased:was found to be predicted by the empirical .relation ....... A good fit to the exoerimental data was obtained using the universal constant............ The differential elastic scattering cross-section data for thin samples of Lithium and Lead were analyzed in terms of optical model calculations using the. computer code. RAROMP. Parameter search procedures produced good fits to the·cross-sections. For the case of thick samples of Lithium and Lead, the measured angular distributions of :the scattered neutrons were compared to the predictions of the continuous slowing down model.
Resumo:
Annual mean salinity, light availability, and sediment depth to bedrock structured the submerged aquatic vegetation (SAV) communities in subtropical mangrove-lined estuaries. Three distinct SAV communities (i.e., Chara group, Halodule group, and Low SAV coverage group) were identified along the Everglades–Florida Bay ecotone and related to water quality using a discriminant function model that predicted the type of plant community at a given site from salinity, light availability, and sediment depth to bedrock. Mean salinity alone was able to correctly classify 78% of the sites and reliably separated the Chara group from the Halodule group. The addition of light availability and sediment depth to bedrock increased model accuracy to 90% and further distinguished the Chara group from the Halodule group. Light availability was uniquely valuable in separating the Chara group from the Low SAV coverage group. Regression analyses identified significant relationships between phosphorus concentration, phytoplankton abundance, and light availability and suggest that a decline in water transparency, associated with increasing salinity, may have also contributed to the historical decline of Chara communities in the region. This investigation applies relationships between environmental variables and SAV distribution and provides a case study into the application of these general principals to ecosystem management.