918 resultados para Integrity and Protection
Resumo:
STUDY OBJECTIVE Prior research has identified five common genetic variants associated with narcolepsy with cataplexy in Caucasian patients. To replicate and/or extend these findings, we have tested HLA-DQB1, the previously identified 5 variants, and 10 other potential variants in a large European sample of narcolepsy with cataplexy subjects. DESIGN Retrospective case-control study. SETTING A recent study showed that over 76% of significant genome-wide association variants lie within DNase I hypersensitive sites (DHSs). From our previous GWAS, we identified 30 single nucleotide polymorphisms (SNPs) with P < 10(-4) mapping to DHSs. Ten SNPs tagging these sites, HLADQB1, and all previously reported SNPs significantly associated with narcolepsy were tested for replication. PATIENTS AND PARTICIPANTS For GWAS, 1,261 narcolepsy patients and 1,422 HLA-DQB1*06:02-matched controls were included. For HLA study, 1,218 patients and 3,541 controls were included. MEASUREMENTS AND RESULTS None of the top variants within DHSs were replicated. Out of the five previously reported SNPs, only rs2858884 within the HLA region (P < 2x10(-9)) and rs1154155 within the TRA locus (P < 2x10(-8)) replicated. DQB1 typing confirmed that DQB1*06:02 confers an extraordinary risk (odds ratio 251). Four protective alleles (DQB1*06:03, odds ratio 0.17, DQB1*05:01, odds ratio 0.56, DQB1*06:09 odds ratio 0.21, DQB1*02 odds ratio 0.76) were also identified. CONCLUSION An overwhelming portion of genetic risk for narcolepsy with cataplexy is found at DQB1 locus. Since DQB1*06:02 positive subjects are at 251-fold increase in risk for narcolepsy, and all recent cases of narcolepsy after H1N1 vaccination are positive for this allele, DQB1 genotyping may be relevant to public health policy.
Resumo:
BACKGROUND Hand eczema has a high impact on patients' quality of life. The treatment focuses on improving skin barrier function. OBJECTIVES To evaluate the effects and acceptance of a novel educational program for patients with hand eczema. METHODS Retrospectively, the records of 36 patients who attended the prevention program and follow-up visits were analyzed. Physician global assessment (PGA) scores, acceptance and behavioral changes were assessed. RESULTS In 67% of patients, an improvement of the hand eczema could be attributed to the effects of our educational program. The mean PGA score significantly decreased from 3 before education to 2.2 during follow-up. Behavioral changes in both skin care and protection were reported in 81 and 86%, respectively. CONCLUSIONs: Our educational program had a positive effect on clinical outcome as well as adherence to skin care and protection measures. Its integration in a hand eczema clinic was feasible and well accepted by the patients.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.
Resumo:
While talk is cheap to some, it is expensive to others for whom moral considerations come into play. We employ a simple two-stage modified prisoner's dilemma game where integrity is endowed on a continuum to analyze when agents will lie in random economic interactions. If there is sufficient integrity in the population, all agents make a promise in the first stage to cooperate in the second. Some agents always lie, some always tell the truth, and some behave conditionally. Enhanced cooperation is a byproduct of integrity.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.
Resumo:
DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.
Resumo:
The PKC1–MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1–green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1–MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscΔ mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS–cAMP pathway. The RAS–cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscΔ strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.
Resumo:
Objective To assess how effectively measures adopted in extreme cold in Yakutsk control winter mortality.
Resumo:
BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse γ-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G2 + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and γ-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.
Resumo:
Certain HLA-B antigens have been associated with lack of progression to AIDS. HLA-B alleles can be divided into two mutually exclusive groups based on the expression of the molecular epitopes HLA-Bw4 and HLA-Bw6. Notably, in addition to its role in presenting viral peptides for immune recognition, the HLA-Bw4, but not HLA-Bw6, motif functions as a ligand for a natural killer cell inhibitory receptor (KIR). Here, we show that profound suppression of HIV-1 viremia is significantly associated with homozygosity for HLA-B alleles that share the HLA-Bw4 epitope. Furthermore, homozygosity for HLA-Bw4 alleles was also significantly associated with the ability to remain AIDS free and to maintain a normal CD4 T cell count in a second cohort of HIV-1-infected individuals with well defined dates of seroconversion. This association was independent of the presence of a mutation in CC chemokine receptor 5 (CCR5) associated with resistance to HIV-1 infection, and it was independent of the presence of HLA alleles that could potentially confound the results. We conclude that homozygosity for HLA-Bw4-bearing B alleles is associated with a significant advantage and that the HLA-Bw4 motif is important in AIDS pathogenesis.
Resumo:
In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5−/− mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14−/− mice. In contrast to the K14−/− mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5−/− mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.