1000 resultados para Instantaneous space phasors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart materials, such as thin-film piezoelectric polymers, are interesting for potential applications on Gossamer spacecraft. This investigation aims to predict the performance and long-term stability of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) and its copolymers under conditions simulating the low-Earthorbit environment. To examine the effects of temperature on the piezoelectric properties of PVDF, poly(vinylidenefluoride-co-trifluoroethylene), and poly(vinylidenefluoride-cohexafluoropropylene), the d33 piezoelectric coefficients were measured up to 160 8C, and the electric displacement/electric field (D–E) hysteresis loops were measured from �80 to þ110 8C. The room-temperature d33 coefficient of PVDF homopolymer films, annealed at 50, 80, and 125 8C, dropped rapidly within a few days of thermal exposure and then remained unchanged. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with d33 remaining almost unchanged up to 125 8C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 8C. In situ D–E loop measurements from �80 to þ110 8C showed that the remanent polarization of the TrFE copolymer was more stable than that of the PVDF homopolymer. D–E hysteresis loop and d33 results were also compared with the deflection of the PVDF homopolymer and TrFE copolymer bimorphs tested over a wide temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene flouride (PVDF) are of interest as adaptive materials for large aperture space-based telescopes. In this study, two piezoelectric polymers, PVDF and P(VDF-TrFE), were exposed to conditions simulating the thermal, radiative and atomic oxygen conditions of low Earth orbit. The degradation pathways were governed by a combination of chemical and physical degradation processes with the molecular changes primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure, as evident from depoling, loss of orientation and surface erosion. The piezoelectric responsiveness of each polymer was strongly dependent on exposure temperature. Radiation and atomic oxygen exposure caused physical and chemical degradation, which would ultimately cause terminal damage of thin films, but did not adversely affect the piezoelectric properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance criteria of piezoelectric polymers based on polyvinylidene flouride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosing. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper questions how the performance place was transformed to a performance space. This major change in distinction holds an ongoing significance to the development of the actors, scenographers, animators, writers and film directors craft within current digitally mediated and interactive performance environments. As part of this discussion this paper traces the crucial seed of the revolution that transformed modern scenographic practice from the droll of the romantic realism of the Victorian stage to the open potential of the performance environment of today. This is achieved through close readings on the practical work of Edward Gordon Craig and Adolphe Appia as well as the scenographic discussions of Chris Baugh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores a way to inform the architectural design process for contemporary workplace environments. It reports on both theoretical and practical outcomes through an exclusively Australian case study of a network enterprise comprised of collaborative, yet independent business entities. The internet revolution, substantial economic and cultural shifts, and an increased emphasis on lifestyle considerations have prompted a radical re-ordering of organisational relationships and the associated structures, processes, and places of doing business. The social milieu of the information age and the knowledge economy is characterised by an almost instantaneous flow of information and capital. This has culminated in a phenomenon termed by Manuel Castells as the network society, where physical locations are joined together by continuous communication and virtual connectivity. A new spatial logic encompassing redefined concepts of space and distance, and requiring a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organisations in a dynamic business world, provides the backdrop for this research. Within the duality of space and an augmentation of the traditional notions of place, organisational and institutional structures pose new challenges for the design professions. The literature revealed that there has always been a mono-organisational focus in relation to workplace design strategies. The phenomenon of inter-organisational collaboration has enabled the identification of a gap in the knowledge relative to workplace design. This new context generated the formulation of a unique research construct, the NetWorkPlace™©, which captures the complexity of contemporary employment structures embracing both physical and virtual work environments and practices, and provided the basis for investigating the factors that are shaping and defining interactions within and across networked organisational settings. The methodological orientation and the methods employed follow a qualitative approach and an abductively driven strategy comprising two distinct components, a cross-sectional study of the whole of the network and a longitudinal study, focusing on a single discrete workplace site. The complexity of the context encountered dictated that a multi-dimensional investigative framework was required to be devised. The adoption of a pluralist ontology and the reconfiguration of approaches from traditional paradigms into a collaborative, trans-disciplinary, multi-method epistemology provided an explicit and replicatable method of investigation. The identification and introduction of the NetWorkPlace™© phenomenon, by necessity, spans a number of traditional disciplinary boundaries. Results confirm that in this context, architectural research, and by extension architectural practice, must engage with what other disciplines have to offer. The research concludes that no single disciplinary approach to either research or practice in this area of design can suffice. Pierre Bourdieau’s philosophy of ‘practice’ provides a framework within which the governance and technology structures, together with the mechanisms enabling the production of social order in this context, can be understood. This is achieved by applying the concepts of position and positioning to the corporate power dynamics, and integrating the conflict found to exist between enterprise standard and ferally conceived technology systems. By extending existing theory and conceptions of ‘place’ and the ‘person-environment relationship’, relevant understandings of the tensions created between Castells’ notions of the space of place and the space of flows are established. The trans-disciplinary approach adopted, and underpinned by a robust academic and practical framework, illustrates the potential for expanding the range and richness of understanding applicable to design in this context. The outcome informs workplace design by extending theoretical horizons, and by the development of a comprehensive investigative process comprising a suite of models and techniques for both architectural and interior design research and practice, collectively entitled the NetWorkPlace™© Application Framework. This work contributes to the body of knowledge within the design disciplines in substantive, theoretical, and methodological terms, whilst potentially also influencing future organisational network theories, management practices, and information and communication technology applications. The NetWorkPlace™© as reported in this thesis, constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent