805 resultados para Insect body size
Resumo:
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.
Resumo:
Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.
Resumo:
The allometric relationships for plant annualized biomass production (“growth”) rates, different measures of body size (dry weight and length), and photosynthetic biomass (or pigment concentration) per plant (or cell) are reported for multicellular and unicellular plants representing three algal phyla; aquatic ferns; aquatic and terrestrial herbaceous dicots; and arborescent monocots, dicots, and conifers. Annualized rates of growth G scale as the 3/4-power of body mass M over 20 orders of magnitude of M (i.e., G ∝ M3/4); plant body length L (i.e., cell length or plant height) scales, on average, as the 1/4-power of M over 22 orders of magnitude of M (i.e., L ∝ M1/4); and photosynthetic biomass Mp scales as the 3/4-power of nonphotosynthetic biomass Mn (i.e., Mp ∝ Mn3/4). Because these scaling relationships are indifferent to phylogenetic affiliation and habitat, they have far-reaching ecological and evolutionary implications (e.g., net primary productivity is predicted to be largely insensitive to community species composition or geological age).
Resumo:
The cytosolic phosphorylation ratio ([ATP]/[ADP][P(i)]) in the mammalian heart was found to be inversely related to body mass with an exponent of -0.30 (r = 0.999). This exponent is similar to -0.25 calculated for the mass-specific O2 consumption. The inverse of cytosolic free [ADP], the Gibbs energy of ATP hydrolysis (delta G'ATP), and the efficiency of ATP production (energy captured in forming 3 mol of ATP per cycle along the mitochondrial respiratory chain from NADH to 1/2 O2) were all found to scale with body mass with a negative exponent. On the basis of scaling of the phosphorylation ratio and free cytosolic [ADP], we propose that the myocardium and other tissues of small mammals represent a metabolic system with a higher driving potential (a higher delta G'ATP from the higher [ATP]/[ADP][P(i)]) and a higher kinetic gain [(delta V/Vmax)/delta [ADP]] where small changes in free [ADP] produce large changes in steady-state rates of O2 consumption. From the inverse relationship between mitochondrial efficiency and body size we calculate that tissues of small mammals are more efficient than those of large mammals in converting energy from the oxidation of foodstuffs to the bond energy of ATP. A higher efficiency also indicates that mitochondrial electron transport is not the major site for higher heat production in small mammals. We further propose that the lower limit of about 2 g for adult endotherm body size (bumblebee-bat, Estrucan shrew, and hummingbird) may be set by the thermodynamics of the electron transport chain. The upper limit for body size (100,000-kg adult blue whale) may relate to a minimum delta G'ATP of approximately 55 kJ/mol for a cytoplasmic phosphorylation ratio of 12,000 M-1.
Resumo:
n.s. no.51(2005)
Resumo:
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.