907 resultados para Injection marinade
Resumo:
Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.
Resumo:
Injection and combustion of vaporized kerosene was experimentally investigated in a Mach 2.5 model combustor at various fuel temperatures and injection pressures. A unique kerosene heating and delivery system, which can prepare heated kerosene up to 820 K at a pressure of 5.5 MPa with negligible fuel coking, was developed. A three-species surrogate was employed to simulate the thermophysical properties of kerosene. The calculated thermophysical properties of surrogate provided insight into the fuel flow control in experiments. Kerosene jet structures at various preheat temperatures injecting into both quiescent environment and a Mach 2.5 crossflow were characterized. It was shown that the use ofvaporized kerosene injection holds the potential of enhancing fuel-air mixing and promoting overall burning. Supersonic combustion tests further confirmed the preceding conjecture by comparing the combustor performances of supercritical kerosene with those of liquid kerosene and effervescent atomization with hydrogen barbotage. Under the similar flow conditions and overall kerosene equivalence ratios, experimental results illustrated that the combustion efficiency of supercritical kerosene increased approximately 10-15% over that of liquid kerosene, which was comparable to that of effervescent atomization.
Resumo:
专门设计了可用于研究箭基组合循环发动机(RBCC)在起动阶段(Ma=0)所使用的引射火箭性能的实验装置.作为初步试验,研究了不同工况的引射热喷流(一次流)和被引射空气(二次流)之间混合的演变、发展过程,找出不同来流条件下影响引射性能的主要参数,为最终探明引射火箭的最佳工作条件打下基础,同时根据试验结果提出了促进一、二次流混合的可行方案,便于下一步深入研究.
Resumo:
A new form of ultrafast bistable polarization switching in twin-stripe injection lasers has been observed. For the first time, triggering between bistable states has been achieved by injecting light from a neighboring laser integrated on the same chip. Ultrafast switching times of 250 ps have been measured (detector limited).
Resumo:
A bistable polarization switching element and optical triggering source has been produced by etching a facet in a twin stripe semiconductor laser. The switching element is formed by a pair of stripe segments at one end of the device and triggered with short light pulses from the other two segments. Detector limited switching risetimes have been measured at 250 ps.
Resumo:
In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.
Resumo:
Analytic expression of pellet acceleration by constant base pressure with consideration of gas-wall friction, heat transfer and viscous dissipation that important for high speed injection is obtained. The process of compression stage is formulated by a set of governing equations and can be numerically integrated. Excellent confirmation with experiments is obtained and the ways to optimum match the compression stage with the launch stage are suggested.
Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection