908 resultados para Inertia (Mechanics).
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
Atomic vibration in the Carbon Nanotubes (CNTs) gives rise to non-local interactions. In this paper, an expression for the non-local scaling parameter is derived as a function of the geometric and electronic properties of the rolled graphene sheet in single-walled CNTs. A self-consistent method is developed for the linearization of the problem of ultrasonic wave propagation in CNTs. We show that (i) the general three-dimensional elastic problem leads to a single non-local scaling parameter (e(0)), (ii) e(0) is almost constant irrespective of chirality of CNT in the case of longitudinal wave propagation, (iii) e(0) is a linear function of diameter of CNT for the case of torsional mode of wave propagation, (iv) e(0) in the case of coupled longitudinal-torsional modes of wave propagation, is a function which exponentially converges to that of axial mode at large diameters and to torsional mode at smaller diameters. These results are valid in the long-wavelength limit. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 mi) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.
Resumo:
The infrared spectrum of the matrix-isolated species of thioacetamide has been simulated using the extended molecular mechanics method. The equilibrium structure, vibrational frequencies, dipole moment and infrared absorption intensities of thioacetamide have been calculated in good agreement with the experiment. The vibrational frequencies and infrared absorption intensities for the isotopic molecules (CH2CSNH2)-C-13, (CH3CSNH2)-N-15 and (CH2CSND2)-C-13 have also been calculated consistent with the experiment. The infrared spectra of the matrix isolated species of N- and C- deuterated isotopomers of thioacetamide, CH3CSND2 and CD3CSNH2 have also been simulated in satisfactory agreement with the experimental spectra.
Resumo:
The forced oscillations due to a point forcing effect in an infinite or contained, inviscid, incompressible, rotating, stratified fluid are investigated taking into account the density variation in the inertia terms in the linearized equations of motion. The solutions are obtained in closed form using generalized Fourier transforms. Solutions are presented for a medium bounded by a finite cylinder when the oscillatory forcing effect is acting at a point on the axis of the cylinder. In both the unbounded and bounded case, there exist characteristic cones emanating from the point of application of the force on which either the pressure or its derivatives are discontinuous. The perfect resonance existing at certain frequencies in an unbounded or bounded homogeneous fluid is avoided in the case of a confined stratified fluid.
Resumo:
The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.
Resumo:
In this article, the Eringen's nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.