930 resultados para In-plane shear equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study employs an analytical model to describe the rocking response of a masonry arch to in-plane seismic loading. Through evaluation of the rate of energy input to the system, the model reveals the ground motions that cause maximum rocking amplification. An experimental investigation of small-scale masonry arches subjected to past earthquake time histories is used to evaluate the analytical model and to explore arch rocking behaviour. The results demonstrate that rocking amplification can occur, but is highly sensitive to slight variations in the ground motion. Thus, the accuracy to which the arch response can be predicted is brought into perspective. The concept that the primary impulse of an expected ground motion is fundamentally important in predicting arch collapse is evaluated in light of the developed energy approach. Finally, a statistical method is proposed for predicting the probability of arch collapse during seismic loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched “on” and “off” reversibly in 600 µs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched on and off reversibly in 600 μs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times. © 2011 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of clay is highly dependent on straining and loading rate. To obtain a realistic prediction of the response for time dependent problems, it is essential to use a model that accounts for rate effects in the stress-strain-strength properties of soils. The proposed model has been expanded from the existing SIMPLE DSS framework to account for the strain rate effects on clays in simple shear conditions. In accordance with the findings in the existing literature, soil response displays a unique relationship between shear strength and strain rate. The predicting model is illustrated with a limited test data. Copyright ASCE 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressure during successive loading cycles. (C) 2000 Published by Elsevier Science Ltd. | Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressures during successive loading cycles.